/ftp/cats/J_other/PASP/132/E4301



==========================================================================
J/PASP/132/E4301          Catalog of Infrared Dark Clouds          (Pari+, 2020)
The following files can be converted to FITS (extension .fit or fit.gz)
	table2.dat
==========================================================================
Query from: http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/PASP/132/E4301
==========================================================================

drwxr-xr-x 6 cats archive 134 Mar 4 2021 [Up] drwxr-xr-x 3 cats archive 276 May 26 2021 [TAR file] -rw-r--r-- 1 cats archive 469 Nov 20 2020 .message -r--r--r-- 1 cats archive 4293 Nov 20 2020 ReadMe -rw-r--r-- 1 cats archive 1206 Nov 20 2020 +footg5.gif -rw-r--r-- 1 cats archive 4498 Nov 20 2020 +footg8.gif -r--r--r-- 1 cats archive 358686 Oct 21 2020 table2.dat.gz [txt] [txt.gz] [fits] [fits.gz] [html]
Beginning of ReadMe : J/PASP/132/E4301 Catalog of Infrared Dark Clouds (Pari+, 2020) ================================================================================ A semi-automated computational approach for Infrared Dark cloud localization: a catalog of Infrared Dark Clouds. Pari J., Hora J.L. <Publ. Astron. Soc. Pac., 132, e4301 (2020)> =2020PASP..132e4301P (SIMBAD/NED BibCode) ================================================================================ ADC_Keywords: Molecular clouds ; Infrared sources ; Morphology Abstract: The field of computer vision has greatly matured in the past decade, and many of the methods and techniques can be useful for astronomical applications. One example is in searching large imaging surveys for objects of interest, especially when it is difficult to specify the characteristics of the objects being searched for. We have developed a method using contour finding and convolution neural networks (CNNs) to search for Infrared Dark Clouds (IRDCs) in the Spitzer Galactic plane survey data. IRDCs can vary in size, shape, orientation, and optical depth, and are often located near regions with complex emission from molecular clouds and star formation, which can make the IRDCs difficult to reliably identify. False positives can occur in regions where emission is absent, rather than from a foreground IRDC. The contour finding algorithm we implemented found most closed figures in the mosaic and we developed rules to filter out some of the false positive before allowing the CNNs to analyze them. The method was applied to the Spitzer data in the Galactic plane surveys, and we have constructed a catalog of IRDCs which includes additional parts of the Galactic plane that were not included in earlier surveys. Description: The mosaics used here are based on images obtained with the IRAC instrument on Spitzer. We used the mosaic images created by the GLIMPSE team for the GLIMPSE and other surveys conducted during the Spitzer mission. we find a total of 18845 objects that should be considered as candidate IRDCs.

© Université de Strasbourg/CNRS

    • Contact