/ftp/cats/A+A/612/A3



==========================================================================
J/A+A/612/A3        HESS Galactic supernova remnants              (Hess+, 2018)
The following files can be converted to FITS (extension .fit or fit.gz)
	tablea1.dat
==========================================================================
Query from: http://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/612/A3
==========================================================================

drwxr-xr-x 29 cats archive 4096 Aug 20 2019 [Up] drwxr-xr-x 3 cats archive 274 Jan 13 2023 [TAR file] -rw-r--r-- 1 cats archive 467 Dec 19 2022 .message -r--r--r-- 1 cats archive 8846 Sep 7 2018 ReadMe -rw-r--r-- 1 cats archive 299 Oct 1 2018 +footg5.gif -rw-r--r-- 1 cats archive 2707 Oct 1 2018 +footg8.gif -r--r--r-- 1 cats archive 11124 Jun 12 2018 tablea1.dat [txt] [txt.gz] [fits] [fits.gz] [html]
Beginning of ReadMe : J/A+A/612/A3 HESS Galactic supernova remnants (Hess+, 2018) ================================================================================ Population study of Galactic supernova remnants at very high gamma-ray energies with H.E.S.S. Hess Collaboration, Abdalla H., Abramowski A., Aharonian F., Ait Benkhali F., Anguner E.O., Arakawa M., Arrieta M., Aubert P., Backes M., Balzer A., Barnard M., Becherini Y., Becker Tjus J., Berge D., Bernhard S., Bernlohr K., Blackwell R., Bottcher M., Boisson C., Bolmont J., Bonnefoy S., Bordas P., Bregeon J., Brun F., Brun P., Bryan M., Buchele M., Bulik T., Capasso M., Caroff S., Carosi A., Casanova S., Cerruti M., Chakraborty N., Chaves R.C.G., Chen A., Chevalier J., Colafrancesco S., Condon B., Conrad J., Davids I.D., Decock J., Deil C., Devin J., Dewilt P., Dirson L., Djannati-Atai A., Donath A., Drury L.O., Dutson K., Dyks J., Edwards T., Egberts K., Emery G., Ernenwein J.-P., Eschbach S., Farnier C., Fegan S., Fernandes M.V., Fernandez D., Fiasson A., Fontaine G., Funk S., Fussling M., Gabici S., Gallant Y.A., Garrigoux T., Gate F., Giavitto G., Giebels B., Glawion D., Glicenstein J.F., Gottschall D., Grondin M.-H., Hahn J., Haupt M., Hawkes J., Heinzelmann G., Henri G., Hermann G., Hinton J.A., Hofmann W., Hoischen C., Holch T.L., Holler M., Horns D., Ivascenko A., Iwasaki H., Jacholkowska A., Jamrozy M., Jankowsky D., Jankowsky F., Jingo M., Jouvin L., Jung-Richardt I., Kastendieck M.A., Katarzynski K., Katsuragawa M., Katz U., Kerszberg D., Khangulyan D., Khelifi B., King J., Klepser S., Klochkov D., Kluzniak W., Komin N., Kosack K., Krakau S., Kraus M., Kruger P.P., Laffon H., Lamanna G., Lau J., Lees J.-P., Lefaucheur J., Lemiere A., Lemoine-Goumard M., Lenain J.-P., Leser E., Lohse T., Lorentz M., Liu R., Lopez-Coto R., Lypova I., Malyshev D., Marandon V., Marcowith A., Mariaud C., Marx R., Maurin G., Maxted N., Mayer M., Meintjes P.J., Meyer M., Mitchell A.M.W., Moderski R., Mohamed M., Mohrmann L., Mora K., Moulin E., Murach T., Nakashima S., De Naurois M., Ndiyavala H., Niederwanger F., Niemiec J., Oakes L., O'brien P., Odaka H., Ohm S., Ostrowski M., Oya I., Padovani M., Panter M., Parsons R.D., Pekeur N.W., Pelletier G., Perennes C., Petrucci P.-O., Peyaud B., Piel Q., Pita S., Poireau V., Poon H., Prokhorov D., Prokoph H., Puhlhofer G., Punch M., Quirrenbach A., Raab S., Rauth R., Reimer A., Reimer O., Renaud M., De Los Reyes R., Rieger F., Rinchiuso L., Romoli C., Rowell G., Rudak B., Rulten C.B., Safi-Harb S., Sahakian V., Saito S., Sanchez D.A., Santangelo A., Sasaki M., Schlickeiser R., Schussler F., Schulz A., Schwanke U., Schwemmer S., Seglar-Arroyo M., Settimo M., Seyffert A.S., Shafi N., Shilon I., Shiningayamwe K., Simoni R., Sol H., Spanier F., Spir-Jacob M., Stawarz L., Steenkamp R., Stegmann C., Steppa C., Sushch I., Takahashi T., Tavernet J.-P., Tavernier T., Taylor A.M., Terrier R., Tibaldo L., Tiziani D., Tluczykont M., Trichard C., Tsirou M., Tsuji N., Tuffs R., Uchiyama Y., Van Der Walt D.J., Van Eldik C., Van Rensburg C., Van Soelen B., Vasileiadis G., Veh J., Venter C., Viana A., Vincent P., Vink J., Voisin F., Volk H.J., Vuillaume T., Wadiasingh Z., Wagner S.J., Wagner P., Wagner R.M., White R., Wierzcholska A., Willmann P., Wornlein A., Wouters D., Yang R., Zaborov D., Zacharias M., Zanin R., Zdziarski A.A., Zech A., Zefi F., Ziegler A., Zorn J., Zywucka N. <Astron. Astrophys., 612, A3 (2018)> =2018A&A...612A...3H (SIMBAD/NED BibCode) ================================================================================ ADC_Keywords: Gamma rays ; Supernova remnants ; Milky Way Keywords: gamma rays: general - ISM: supernova remnants Abstract: Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E =3x10^15^eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE gamma-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n<=7cm^-3^ and electron-to-proton energy fractions above 10TeV to epsilon_ep_<=5x10^-3^. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs. Description: In this study, we selected only data of high quality using the criteria described in Aharonian et al. (2006A&A...457..899A) and the quality cut on atmospheric transparency conditions developed by Hahn et al. (2014, Astropart. Phys., 54, 25). The observation live time of the analysed regions, corrected by the H.E.S.S. gamma-ray acceptance, spans a range from  10min to  80h with a median value of 14.5h. The majority of data (  80%) have been recorded at average zenith angles smaller than 40deg. Table A.1 lists the analysed source sample and the corrected observation live time, the averaged zenith angle for the observations of each source, and the closest H.E.S.S. source.