
i

Programming in GILDAS

Major revision on October 2008, but still not fully up-to-date

Questions? Comments? Bug reports? Mail to: gildas@iram.fr

The gildas team welcomes an acknowledgment in publications
using gildas software to reduce and/or analyze data.
Please use the following reference in your publications:

http://www.iram.fr/IRAMFR/GILDAS

Documentation
In charge: S. Guilloteau1.
Active developers: S. Bardeau2, J. Pety2,3, E. Reynier2.

Software (GILDAS kernel)
In charge: J. Pety2,3.
Active developers: S. Bardeau2, S. Guilloteau1, E. Reynier2.
Main past contributors: F. Badia, D.Broguière, G. Buisson, L. Desbats, G. Duvert,
T. Forveille, R. Gras, P. Valiron.

1. Observatoire de Bordeaux
2. IRAM
3. Observatoire de Paris

Related information are available in

• GILDAS general introduction

• GREG: Graphical Possibilities

• SIC: Command Line Interpretor



ii



Contents

Introduction vii

1 SIC Programming Manual - Partially updated on Oct.2008 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Initializing SIC: Languages and Packages . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Language Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 The command dispatching and handling . . . . . . . . . . . . . . . . . . . . 6

1.3 The Help File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Retrieving Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 The messaging facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Writing on files: Fortran logical unit number . . . . . . . . . . . . . . . . . 9
1.5.2 Linking on Linux: TO BE UPDATED . . . . . . . . . . . . . . . . . . . . . 9

1.6 The Library Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.1 Library Only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Using Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.2 Assignment and Examination . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.3 Mathematical Formula Handling . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.4 Deleting Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Using Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 SIC Callable Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9.1 Monitor interface routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9.2 SIC Arguments Retrieving Routines . . . . . . . . . . . . . . . . . . . . . . 15
1.9.3 Command Line Interpretor Subroutines . . . . . . . . . . . . . . . . . . . . 17
1.9.4 All Purpose General Subroutines . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9.5 Symbol Manipulation Routines . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.10 Obsolescent Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10.1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10.2 Routines for Library usage (Obsolescent, for record only) . . . . . . . . . . 19

2 GreG Programming Manual 21
2.1 Interaction with FORTRAN programs . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Basic Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 UNIX systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



iv CONTENTS

2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Array Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 GR4 GIVE - GR8 GIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 GR4 GET - GR8 GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 GR4 RGIVE - GR8 RGIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.4 GR4 LEVELS - GR8 LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Immediate Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.1 GR SEGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 GR OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 DRAW - RELOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.4 GDRAW - GRELOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.5 GR4 PHYS USER - GR8 PHYS USER . . . . . . . . . . . . . . . . . . . . 26
2.7.6 GR4 USER PHYS - GR8 USER PHYS . . . . . . . . . . . . . . . . . . . . 26
2.7.7 GR4 CONNECT - GR8 CONNECT . . . . . . . . . . . . . . . . . . . . . . 26
2.7.8 GR4 HISTO - GR8 HISTO . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.9 GR4 MARKER - GR8 MARKER . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.10 GR4 CURVE - GR8 CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.11 GR4 EXTREMA - GR8 EXTREMA . . . . . . . . . . . . . . . . . . . . . . 28
2.7.12 GR8 BLANKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.13 GR8 SYSTEM - GR8 PROJEC . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.14 GR4 RVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.15 GR WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.16 GR8 TRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.17 GR8 SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.18 GR CLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 The cursor routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 greg High-Level Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Task Programming Manual 35
3.1 General Outline and Data Structure of Images . . . . . . . . . . . . . . . . . . . . 35
3.2 Fortran-90 access to images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 GIO API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Obsolete Fortran-77 access routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Image Slot Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Image Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 Memory Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Creating GILDAS Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 A Template Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 Initialization file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.3 The HELP file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.4 Checker File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Debugging Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS v

4 GTV Programming Manual 55
4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Plot Structuration and multi-window applications . . . . . . . . . . . . . . . . . . . 58
4.5 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



vi CONTENTS



Introduction

The gildas Programming Manual includes all necessary information to create applications based
on the gildas tools. The tools includes:

• sic the command line interpreter, written in FORTRAN and callable as a subroutine by
any program.

• greg the high level Graphic library.

• Independent Tasks for specific applications. The Task programming section describes how
to create new gildas tasks.

The gtvirt low level Graphic library is also described for completeness, although very few
programs will actually require using its possibilities directly.

This manual contains several chapters. Chapter 2 (the sic programming manual) is essen-
tial when constructing interactive applications. Chapter 3 (the greg programming manual) is
essential for all graphics applications. To create tasks, the user only needs to read Chapter 4
(the gildas task programming manual). Sophisticated graphic application may require to read
Chapter 5, the gtvirt programming manual.

vii



viii INTRODUCTION



Chapter 1

SIC Programming Manual - Partially
updated on Oct.2008

1.1 Introduction

sic (*) is a command line interpretor, written in FORTRAN and callable as a subroutine by any
program. It provides a command language, with the following major features:

• resolution of command abbreviations

• definition of symbols

• macro capabilities with arguments substitution during execution

• log file

• multi-language structure

• loop buffers for repetitive actions

• variables, arithmetic and logical expressions evaluation

• structured logical tests

• error recovery

• stack buffer

• editing of command lines

• GUI interface on Motif, OS/X and MS-Windows systems

• optionally, a Python interface

This section concerns the programmer who wants to use sic as the monitor of a simple
or complex, evolutive, documented interactive program. It assumes that the reader is already
familiar with all capabilities of sic, so that he should be able to design a program (or better a
system) around the sic monitor.

It is in fact essentially a “CookBook” giving a list of recipes to build a program using sic, or
interface sic with a preexisting ensemble of routines. Following these recipes should result in a
complete success, that is, a program fulfilling the following requirements:

1



2 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

• Works in interactive or batch, reading commands on Standard Input This is called Read
Mode.

• Can be called as a subroutine to execute a single command (Execute Mode). In case of
error or if a PAUSE is encountered, the system switches to Read Mode for interactive error
recovery or to read commands after the PAUSE.

• Is completed by a library version

• The library version can be used to make another language around it.

• Is portable on all Unix-like systems (including Mac OS/X) and MS-Windows.

The section 1.2 describes the command vocabulary structure, and the initialization sequence
of sic. Section 1.3 indicates how to write the corresponding HELP files. Section 1.4 describes
how to retrieve arguments from a sic command line. Section 1.6 indicates how to complete the
program so that it can also be a library of routines. Finally, Section 1.7 indicates how to use sic
variables, and Section 1.9.1 give all entry points of the sic monitor.

sic programming interface is designed for the Fortran language. Interfacing with C language
requires some system dependent precautions concerning argument passing mechanism, in partic-
ular for character strings.

1.2 Initializing SIC: Languages and Packages

sic is a multi-package multi-language interpretor. A package is a collection of tools logically
grouped together to provide some related applications, e.g. a plotting ensemble like GreG. A
package can reference several languages: for example, GreG contains 4 languages: GREG1,
GREG2, GREG3 for 1-D, 2-D and 3-D data plotting, and GTV for the basic plot actions. sic
itself has 5 languages: SIC, VECTOR, ADJUST, GUI and TASK, with the last two in “Library
only” mode.

1.2.1 Packages

A main program using sic is reduced to practically nothing: For example, the main program of
Mapping is

program mapping
!----------------------------------------------------------------------
! Main astro program
!----------------------------------------------------------------------
external :: mapping_pack_set
!
call gmaster_run(mapping_pack_set)
!

end program mapping

All the job is done by gmaster run which declares Mapping as the master program, and calls its
package setup routine mapping pack set.

This package setup routine named name pack set, where name is the package name, contains
e.g. for mapping



1.2. INITIALIZING SIC: LANGUAGES AND PACKAGES 3

subroutine mapping_pack_set(pack)
use gpack_def
!
type(gpack_info_t), intent(out) :: pack
!
external :: greg_pack_set
external :: mapping_pack_init
external :: mapping_pack_on_exit
!
pack%name=’mapping’
pack%ext = ’.map’
pack%depend(1:1) = (/ locwrd(greg_pack_set) /)
pack%init=locwrd(mapping_pack_init)
pack%on_exit=locwrd(mapping_pack_on_exit)
pack%authors="J.Pety, N.Rodriguez-Fernandez, S.Guilloteau, F.Gueth"
!

end subroutine mapping_pack_set

pack is here a Fortran derived-type variable, with the following elements

• pack%name The package name (Character(len=12))

• pack%ext The default extension for procedures (Character(len=12))

• pack%depend The addresses of the package setting routines required by this package (an
integer array of type Address Length, 32 or 64 bits depending on the machine). Note that
a package may depend on several other ones. The dependent packages are automatically
loaded.

• pack%init The address of the initialization routine (an integer of type Address Length)

• pack%init The address of the cleaning on exit routine (an integer of type Address Length)

• pack%authors A character string handling the authors name

The initialisation routine referred to by pack%init must setup all the package languages, and
execute any code require to provide the initial setup of the package. In addition, it is recommended
to setup the messaging facility: in the example below this is done using name message set id.

subroutine mapping_pack_init(gpack_id,error)
use sic_def
!----------------------------------------------------------------------
!
!----------------------------------------------------------------------
integer :: gpack_id
logical :: error
!
! Local language
call init_clean
!
! One time initialization
call map_message_set_id(gpack_id) ! Set library id



4 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

!
! Language priorities
call exec_program(’SIC’//backslash//’SIC PRIORITY 1 CLEAN’)
!
! Specific initializations
!

end subroutine mapping_pack_init

1.2.2 Language Definition

A language contains an ensemble of commands. Each language must be initialized by means of
an appropriate call to the routine SIC BEGIN. This routine has the following calling list:

SIC_BEGIN(LANG,HELP,MCOM,VOCAB,VERSION,Dispatch,Error)

LANG is a Character constant which gives the name of the language. LANG need not be distinct
from the command names, and it must not include the character \ which will appear in the
internal HELP of sic. MCOM is the number of commands and options appearing in the language
vocabulary VOCAB. All commands in a sic language are CHARACTER constants in which the first
character is a reserved code. Lower case characters are not allowed, but the special character
" " may appear. All other special characters have (or may have in the future) some specific
meaning in sicṪhe following is the DATA initialization statement of sic itself given as an example
of language.

integer :: sic_commands
parameter (sic_commands=76)
character(len=12) :: sic_vocab(sic_commands)
data sic_vocab/ &

’ HELP’, & ! Must be the first one...
’ @’, & ! Others by alphabetic order
’ ACCEPT’, ’/ARRAY’,’/BINARY’,’/COLUMN’,’/FORMAT’,’/LINE’, &
’ BEGIN’, &
’ BREAK’, &
’ COMPUTE’, ’/BLANKING’, &
’ CONTINUE’, &
’ DEFINE’, ’/GLOBAL’,’/LIKE’, &
’ DELETE’, ’/SYMBOL’,’/VARIABLE’,’/FUNCTION’, &
’ EDIT’, &
’ ELSE’, &
’ EXAMINE’, ’/GLOBAL’,’/FUNCTION’,’/HEADER’,’/ADRESS’,’/ALIAS’, &
’#EXIT’, &
’ END’, &
’ FOR’, ’/WHILE’, &
’ IF’, &
’ IMPORT’, ’/DEBUG’, &
’ LET’, ’/NEW’,’/PROMPT’,’/WHERE’,’/RANGE’,’/CHOICE’,’/FILE’, &

’/INDEX’,’/SEXAGESIMAL’,’/LOWER’,’/UPPER’,’/FORMAT’, &
’/FORMULA’,’/REPLACE’,’/STATUS’, &



1.2. INITIALIZING SIC: LANGUAGES AND PACKAGES 5

’ MESSAGE’, &
’ MFIT’, ’/START’,’/STEP’,’/WEIGHTS’,’/EPSILON’,’/METHOD’, &

’/ITERATIONS’,’/QUIET’,’/BOUNDS’, &
’ NEXT’, &
’ ON’, &
’ PAUSE’, &
’ PYTHON’, ’/END’, &
’#QUIT’, &
’#RECALL’, &
’ RETURN’, &
’ SAY’, ’/FORMAT’, &
’ SIC’, &
’ SORT’, &
’ SYMBOL’, ’/INQUIRE’, &
’ SYSTEM’, &
’ TYPE’/

The first character code is interpreted as follow

<space> Usual command

/ Option of the preceding command

# Command forbidden in the stack and in procedures. Commands of this type are still written
in the Log File.

$ Special command which must not be inserted automatically in the stack. Commands of this
type are written in the Log File

* Purely informative command, which is only useful in an interactive session. Commands of
this type are not written in the Log File and not inserted in the Stack.

The * code can also be used for complex commands using alphanumeric keywords that you
wish to expand yourself before saving them in the Log File and the Stack, or for commands that
may require to output several records (See SIC INSERT, SIC LOG and SIC LIRE). The greg
command DRAW is an example of this.

The programmer should be careful about deciding what attribute to give to any command.
All the options referring to a command must immediately follow it. At initialization time, sic
recognizes the options and set up a table of pointers connecting the options to their respective
commands. A failure to respect the adequate order results in a very strange vocabulary.

VERSION is a character string which must contain the version number, and may contain the
date of last modification, the name of the programmer,... The following example is recommended
for optimum presentation (respect the alignment of the date for different languages):

VERSION=’1.0 21-APR-1984 Programmer Name’

Dispatch is a subroutine to handle the dispatching of actions for all commands in the lan-
guage.

ErrorRoutine is a subroutine to perform the error recovery action in case the execution of a
command of this language returns an error. It may do nothing.



6 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

1.2.3 The command dispatching and handling

The dispatching routine is typically a big SELECT CASE based on the command name, like this
one

subroutine run_clean (line,comm,error)
use gbl_message
!----------------------------------------------------------------------
! CLEAN Main routine
! Call appropriate subroutine according to COMM
!----------------------------------------------------------------------
character(len=*), intent(inout) :: line ! Command line
character(len=*), intent(in) :: comm ! Command name
logical, intent(out) :: error ! Logical error flag
!
call map_message(seve%c,’CLEAN’,line)
!
! Analyze command
select case (comm)
case (’LOAD’)

call load_buffer(line,error)
case (’READ’)

call read_image(line,error)
case (’CLARK’)

call clark_clean(line,error)
case (’FIT’)
... etc...

case default
call map_message(seve%i,’CLEAN’,comm//’ not yet implemented’)

end select
!

end subroutine run_clean

A handling routine for the a command looks like

SUBROUTINE COM1(LINE,ERROR)
CHARACTER*(*) LINE
LOGICAL ERROR
LOGICAL SIC_PRESENT
INTEGER IARG1_OPT1
REAL ARG1

!
! Test presence of option 1, and if so
! Decode Argument 1 of this option with a default value

IF (SIC_PRESENT(1,0)) THEN
IARG1_OPT1 = 10
CALL SIC_I4 (LINE,1,1,IARG1_OPT1,.FALSE.,ERROR)
IF (ERROR) RETURN
WRITE (6,*) ’Option 1 Set With Argument’,IARG1_OPT1



1.3. THE HELP FILE 7

ENDIF
!
! Retrieves and decode first argument of the command

CALL SIC_R4 (LINE,0,1,ARG1,.TRUE.,ERROR)
IF (ERROR) RETURN
WRITE (6,*) ’Command COM1 activated. ARG1’,ARG1

! End of interface analysis, call a standard FORTRAN routine with
! all parameters now defined

CALL SUB1(ARG1,ARG2,...,IARG1,...,ERROR)
RETURN
END

The command line buffer LINE must be passed by argument, never in a Module, to allow modu-
larity and multi-language use.

1.3 The Help File

The HELP files are simple text files with two levels of help. The list of help topics in the library
should be identical to the list of commands of the program. In addition, a specific topic named
LANGUAGE should include a one line description of all commands, with a subtopic named NEWS
which describe the latest news on the specific language.

The HELP files format is the following

1 TOPIC
help for this topic

2 SUBTOPIC
help for a subtopic of the previous topic

1 OTHER_TOPIC
text for other_topic

1 ENDOFHELP

where 1 and 2 are in the first column of the text file, and followed by a single space. This format
is easy to modify as it is a simple text file, but much slower to access because it is sequential.
The 1 ENDOFHELP (with no trailing characters) sequence indicates the end of the help file.

The help file name should be assigned to the logical name specified in the SIC BEGIN call, or
given explicitly.

1.4 Retrieving Arguments

To properly interface your program, you must know how to retrieve an argument from the com-
mand buffer processed by sicİn standard sic offers for each command up to 98 options, and for
each option (or command) up to 98 arguments, the total number of arguments and options in a
command line being limited to 99.

Arguments in sic command lines are positional. The position of argument number IARG of
option number IOPT of the current command is kept in sic by means of internal pointers, By
convention, argument number 0 refers to the option (or command) itself, and option number
0 to the command itself. Four standard routines are provided to decode the following type of
arguments. All these routines do not modify the value of the argument if it is missing in the



8 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

command buffer. They may return an error condition and output an error message if requested
in this case.

Argument Type Routine Name
Integer*4 SIC_I4
Real*4 SIC_R4
Real*8 SIC_R8
Logical*4 SIC_L4
Character SIC_CH
Character SIC_KE (Upcase converted keyword)

The first four routines routines have the following calling list

CALL SIC_name (LINE,IOPT,IARG,Arg,PRESENT,ERROR)
in which

LINE The command buffer
IOPT The option number (0=command)
IARG The argument number (0=command or option)
Arg The argument to be retrieved
PRESENT A flag indicating whether an error must occur if

the argument is not present in the command line
ERROR An error flag set in case of decoding errors,

or for missing argument when PRESENT is set.

SIC CH and SIC KE are slightly different, because they also return the length of the character
string:

CALL SIC_CH (LINE,IOPT,IARG,Arg,Larg,PRESENT,ERROR)
CALL SIC_KE (LINE,IOPT,IARG,Arg,Larg,PRESENT,ERROR)

where
Larg Integer, true length of Arg

While SIC CH returns any character string, with implicit formatting if necessary, but no case
conversion, SIC KE returns upcase keywords.

Two additional routines provide a way of testing the presence of an argument
SIC PRESENT(IOPT,IARG) returns the logical value .TRUE. if the required argument is present,
and SIC LEN(IOPT,IARG) returns the actual length of the argument (0 means the argument is
missing). A last routine, SIC NARG(IOPT) indicates how many arguments are actually present
for option IOPT.

Note that due to the structure of sic vocabulary, IOPT is always the sequential number of the
option as defined by the ordering in the DATA statement. Hence IOPT is not dependent on the
order in which the options appear in the command buffer currently analysed.

sic also includes some general character string manipulation routines which may be of interest
in many other problems. All these routines are described more completely in section 1.9.1.

1.5 The messaging facility

This needs to be documented.



1.6. THE LIBRARY VERSION 9

1.5.1 Writing on files: Fortran logical unit number

sic has the following usage of Fortran logical unit numbers:

5 Input of Commands, shareable
6 Output of messages, shareable
50 to 99 Used by SIC_GETLUN

Units 5 and 6 are respectively accessed via usual READ and WRITE instructions.
Units 5 and 6 are respectively accessed via usual READ and WRITE instructions. If you wish to be

able to reassign the input or/and output of your program to a file, you should also make your input
and output in the same way (or use the SIC WPR, SIC WPRN routine). If you mix READ(5,format)
and WRITE(6,format) instructions with PRINT, READ(*,format) or WRITE(*,format) instruc-
tions, you might experience some problem. Mixing with C output (printf routine for example)
may yield to disordered output because of buffering. Use of routine GAGOUT , or of the messaging
facility, is recommended to printout information.

The monitor uses additional logical units for the LOG file, for opening temporary files and for
active procedures. These units are taken in the range 50 to 99. Units 50 to 99 are assumed to
be available for the routine SIC GETLUN . This subroutine returns the next available logical unit
in this range, and keeps track of their usage. Conflict may occur if the user directly opens a file
under a unit in this range without allocating the unit through a call to SIC GETLUN. Other units
are never used by sic and other gildas programs.

1.5.2 Linking on Linux: TO BE UPDATED

On Unix system, the location of the GILDAS software environment is normally defined by exe-
cuting a simple starting script, like this one, typically in the .bash profile of the user.

export GAG_ROOT_DIR=/home/Guilloteau/gildas/gildas-exe-dev
export GAG_EXEC_SYSTEM=pc-cygwin-gfortran
source $GAG_ROOT_DIR/etc/bash_profile

The development environment can be accessed by typing

source $GAG_ROOT_DIR$/admin/gildas-env.sh

which selects the default compilers to build the system. The development environment architec-
ture uses Makefiles, and the best to develop a new program is just to clone some architecture
(see contrib/example for a full working example To be Done).

1.6 The Library Version

Once you have completed the previous operations, an interactive system is available. The system
can also be used in batch or within command procedures. Each command handled interactively
can also be executed from a program, using either exec command (for simple commands), or
exec program (to execute a procedure, or complex commands calling such procedures).

call exec_command{command,error}
call exec_program(command)



10 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

where command is a character string containing the command to be executed. exec command is
reserved to execute atomic commands, and return an error in case of problems. On the other
hand, exec program is typically called with command= ’@ MyProcedure’. It cannot return an
error, but the procedure or code being executed must have its own error handling mechanism.

1.6.1 Library Only mode

It is sometimes a burden to have complex languages such as GREG1\ in your HELP when you just
want to use the library version of the language. sic provides a way to load a language in “Li-
brary Only” mode. Commands of such languages are accessible only through the exec command
mechanism (or an equivalent coding). This mode is useful for building another more elaborate
language from one (or more) lower level languages (pay attention to possible recursive program-
ming in doing so however). This mode is called by loading the corresponding language with a
negative size specification :

SIC_BEGIN(LANG,HELP,-MCOM,VOCAB,VERSION,Dispatch,ErrorRoutine)

A language loaded in such a mode can still be accessed interactively or in procedures: the
command name must be given with the full language name in it to resolve the command. Similarly,
the HELP can be accessed by giving the full language and command names.

1.7 Using Variables

sic allows the definition and use of variables. Variables can be declared by the user, or by the
program. In the latter case, sic only remembers the address of the variable, examining its content
only when required (command EXAMINE for example or any reference to the variable name in a
command). This imposes two precautions in the FORTRAN code.

1. The attribute of the sic variable (READ-ONLY or READ-WRITE) should be chosen carefully
(e.g. a real-time application in which the time is declared as a sic variable).

2. The corresponding FORTRAN variable must be SAVEd to prevent the compiler to allocate
it on the stack.

1.7.1 Definition

There are 5 variable declaration routines following the same calling conventions

Argument Data Type Name of Subroutine
REAL(KIND=8) SIC_DEF_DBLE
REAL(KIND=4) SIC_DEF_REAL
INTEGER(KIND=4) SIC_DEF_INTE
CHARACTER(LEN=*) SIC_DEF_CHAR, SIC_DEF_STRN, SIC_DEF_CHARN
LOGICAL(KIND=4) SIC_DEF_LOGI, SIC_DEF_LOGIN

The calling syntax is the following
CALL SIC_DEF_Name (NAME,VARIABLE,READONLY,ERROR)

for LOGI and CHAR, and
CALL SIC_DEF_Name (NAME,VARIABLE,NDIM,DIM,READONLY,ERROR)

for DBLE, REAL, INTE, CHARN, and LOGIN, NDIM being the number of dimensions,



1.7. USING VARIABLES 11

and DIM the dimensions of the array VARIABLE, and
CALL SIC_DEF_STRN (NAME,VARIABLE,LEN,READONLY,ERROR)

LEN being the length of VARIABLE.

NAME is the name of the sic variable, VARIABLE the name of the corresponding FORTRAN
variable, READONLY a logical indicating whether the variable should be Read-Only (.TRUE.)
or Read-Write (.FALSE.). ERROR is a logical error flag set by sic if the variable could not be
defined.

In addition, SIC DEFSTRUCTURE(Name,readonly,error) can be used to define SIC structures.

1.7.2 Assignment and Examination

sic variables can be assigned new values, and examined using the following routines.

Argument Data Type Assignment Examination Subroutine
REAL(kind=8) SIC_LET_DBLE SIC_GET_DBLE
REAL(KIND=4) SIC_LET_REAL SIC_GET_REAL
INTEGER(KIND=4) SIC_LET_INTE SIC_GET_INTE
LOGICAL(KIND=4) SIC_LET_LOGI SIC_GET_LOGI
CHARACTER(LEN=*) SIC_LET_CHAR SIC_GET_CHAR

The calling syntax is the following
CALL SIC_LET_Name (NAME,VARIABLE,ERROR)
CALL SIC_GET_Name (NAME,VALUE,ERROR)

except for SIC_GET_CHAR
CALL SIC_GET_CHAR (NAME,STRING,LENGTH,ERROR)

These a-priori useless routines can be used to modify variables defined in completely independent
parts of a program such as the codes supporting two different sic languages. For example the
GRAPHIC\ language interacts with GREG1\ and GREG2\ through sic variables.

For assignment routines, the data type of the VARIABLE argument and of the sic variable
must match exactly. For retrieving routines, the data type to specify is the type of the VALUE
argument; implicit conversion from the type of the sic variable is done if possible, an error is
returned otherwise.

Only SCALAR variables can be assigned or examined in this way. For ARRAY variables, you
should use the subroutine SIC DESCRIPTOR.

CALL SIC_DESCRIPTOR (VARIABLE,DESC,FOUND)

- VARIABLE (input) is the variable name (general syntax A[i,j]
allowed)

- DESC (output) is the descriptor of the variable, an instance of
the derived type ’SIC_DESCRIPTOR_T’ provided by the module
’GKERNEL_TYPES’, containing:
DESC%TYPE Variable type:

* DESC%TYPE > 0 : Character string of length DESC%TYPE
* DESC%TYPE < 0 may have the value

FMT_R4 for REAL(KIND=4) variable



12 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

FMT_R8 for REAL(KIND=8) variable
FMT_I4 for INTEGER(KIND=4) variable
FMT_I8 for INTEGER(KIND=8) variable
FMT_L for LOGICAL(KIND=4) variable
FMT_BY for INTEGER(KIND=1) variable
FMT_C4 for COMPLEX(KIND=4) variable

DESC%NDIM Number of dimensions
DESC%DIMS(7) Dimensions
DESC%ADDR Variable address
DESC%SIZE Size of allocation (4-bytes words)
DESC%STATUS Origin of variable

0 program defined
< 0 user defined
> 0 image

DESC%READONLY True if the variable is read-only for the user.
- FOUND (output) is a logical indicating whether the specified
variable exists or not.

The parameters FMT R4, FMT R8, FMT I4, FMT I8, FMT L, FMT BY and FMT C4 are defined
in the module gbl format.

Three other routines may be required for variable handling:

CALL SIC_MATERIALIZE(VARIABLE,DESC,FOUND)

is like SIC DESCRIPTOR, but allow implicit transposition and sub-arrays in the variable name.
An intermediate variable will be created to handle such cases.

SIC INCARNATE is used to create an “incarnation” of a variable under a specified type (REAL,
DOUBLE, INTEGER).

CALL SIC_INCARNATE(FORM,DESC,INCA,ERROR)
where

- FORM is the format of the desired incarnation (FMT_R4, FMT_I4
or FMT_R8)

- DESC is the descriptor of the variable
- INCA is the descriptor of the incarnation
- ERROR is a logical error flag

DESC and INCA are instances of the derived type SIC DESCRIPTOR T. DESC should have been
obtained by a previous call to SIC DESCRIPTOR.

Once used, the materialization or incarnation may be deleted using routine SIC VOLATILE

CALL SIC_VOLATILE(INCA)
where

- INCA is the descriptor of the incarnation/materialization.

1.7.3 Mathematical Formula Handling

Two subroutines are available to decode mathematical or logical expressions, SIC MATH and
SIC LOGICAL. In addition, a subroutine is available to decode generalized sexagesimal notation,
SIC SEXA. The calling syntax is the following



1.8. USING FUNCTIONS 13

CALL SIC_name (EXPRESSION,LENGTH,VARIABLE,ERROR)

where EXPRESSION is a character string containing the mathematical or logical expression to
be evaluated, LENGTH is the number of characters of this expression, VARIABLE a REAL*8 (or
LOGICAL*4) variable to receive the expression value, and ERROR a logical error flag. A generalized
sexagesimal notation is for example A:B:C or A:B, where A, B and C may be variables or
expressions or numbers. B and C values must of course be greater than or equal to 0 and less
than 60. The value is returned in units of A, the leftmost field.

1.7.4 Deleting Variables

Declared variables can be deleted when no longer needed, using routine SIC DELVARIABLE. The
calling syntax is the following

CALL SIC_DELVARIABLE (NAME,USER,ERROR)

where NAME is the sic variable name, USER a logical indicating whether program-defined variable
are protected against deletion (.TRUE.) or can be deleted (.FALSE.), and ERROR a logical error
flag.

1.8 Using Functions

It is possible to define user callable functions which are recognized in the mathematical formulae
evaluations, using subroutine SIC DEF FUNC as follows

CALL SIC_DEF_FUNC(NAME,SF,DF,NARG,ERROR)
where

NAME is the function name
SF is the address of the single precision implementation of

the function
DF is the address of the double precision implementation of

the function
NARG is the number of arguments of the function.
ERROR is an error flag

Both single and Double precision routines will be called like as (e.g. for two arguments)

S = SF(arg1,arg2) and D = DF(arg1,arg2)

1.9 SIC Callable Routines

1.9.1 Monitor interface routines

Available subroutines:
SIC_BEGIN SIC_OPT SIC_RUN
SIC_INSERT SIC_LOG SIC_LANG

Available functions:
SIC_CTRLC SIC_LIRE SIC_INTER_STATE



14 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

To build a program around the sic monitor, different routines are provided. Some must always
be used, like SIC BEGIN, others are simply provided for additional capabilities. These routines
have a standard SIC like name and are fully described in this section.
SIC BEGIN (LANG,HELP,NCOM,CCOM,VERSION,Dispatch,Error)

This subroutine initialize a sic language and thus is usually the first one called. All arguments
are unchanged by the routines and may be passed as immediate values.

• LANG Character*(*).
The language name, as it will appear in the HELP and will be returned by sic after command
line processing. It is truncated to 12 characters if necessary.

• HELP Character*(*).
The logical name for the HELP file corresponding to the language being initialized.

• NCOM Integer.
The number of command and options, i.e. the dimension of the CCOM character array

• CCOM Character*(*) array of dimension NCOM.
Contains the vocabulary of the language. The structure of the command vocabulary is
described elsewhere in this document.

• VERSION Character*(*).
A string to indicate the version number, the last modified date, the programmer name,...
which will appear as a message with the language name at run time when using the SIC
VERSION command

• Dispatch The dispatching routine

• Error The error handling routine

SIC INSERT(LINE)
This routine is only useful when the Stack Buffer is used to store commands. This is the

default, and the case when the flag MEMORY was set to .TRUE. in the first call to SIC OPT. It can
be changed with the SIC MEMORY command. SIC INSERT is used to put a command line into the
Stack buffer, a very useful possibility for some applications, when several lines must be put or
when the command line must be expanded by the user program before the insertion is made.

Note however that command lines are automatically inserted in the Stack Buffer by the
monitor for usual commands. This is the standard way of using the Stack insertion mode, since
it automatically takes into account many things like the execution level before deciding whether
an insertion must occur. Using directly SIC INSERT usually implies to disable the automatic
insertion by the monitor (using the character code * in the definition of the associated command,
c.f. Section 1.2). You need also to perform a call to SIC LIRE to check the sic execution mode
(you should only call SIC INSERT when SIC LIRE() is equal to 0) and associated calls to SIC LOG
to write the same information in the LOG file. The insertion does not occur if the memory flag is
turned off (SIC MEMORY OFF).

• LINE Character*(*).

SUBROUTINE SIC LOG (LINE,NL,LIRE)
This subroutine writes LINE(1:NL) into the Log File if LIRE=0. LIRE is here necessary for

consistency with the internal pointer indicating if sic is processing a macro, the stack or the loop.
This pointer can be retrieved by the function SIC LIRE. A call to SIC LOG when LIRE is not 0
has no action.



1.9. SIC CALLABLE ROUTINES 15

• LINE Character*(*) Input

• NL Integer Input

• LIRE Integer Input

SUBROUTINE SIC LANG(LANG)

This subroutine returns the name of the language corresponding to the last command anal-
ysed. It is called only when building the library version of a multi-language application.

• LANG Character*(*) is returned by the routine

LOGICAL FUNCTION SIC CTRLC ( )

sic itself traps the <^C> by generating a PAUSE at the end of the command which was being
executed when <^C> was pressed. You may want in time-consuming applications to check yourself
at specific points whether <^C> has been pressed. SIC CTRLC allows you to do so, and resets an
internal flag to .FALSE. when called. It returns .TRUE. if <^C> has been pressed since either the
last command completed execution or the last time it was called (using the most recent event),
.FALSE. otherwise.
INTEGER FUNCTION SIC LIRE ( )

This subroutine returns the internal pointer of sic indicating where sic is currently reading
its commands. SIC LIRE may take the values

• -10 Subroutine mode

• -2 Reading in the Loop buffer

• -1 Called from SIC RUN with ICODE = -1

• 0 Interactive mode

• I>0 Reading in macro number I

LOGICAL FUNCTION SIC INTER STATE( )

This subroutine returns .TRUE. if the session is interactive, .FALSE. otherwise. This is the
case if sic is ran during a batch process.

1.9.2 SIC Arguments Retrieving Routines

Available subroutines:
SIC_L4 SIC_I4 SIC_R4 SIC_R8
SIC_CH SIC_KE SIC_NEXT

Available functions:
SIC_PRESENT SIC_LEN SIC_NARG SIC_START

There are 5 retrieving routines following similar calling conventions



16 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

Argument Data Type Name of Subroutine
REAL(KIND=8) SIC_R8
REAL(KIND=4) SIC_R4
INTEGER(KIND=4) SIC_I4
LOGICAL(KIND=4) SIC_L4
CHARACTER(LEN=*) SIC_CH, SIC_KE

The calling syntax is the following
CALL SIC_Name (LINE,IOPT,IARG,ARGUM,PRESENT,ERROR)

Except for SIC_CH and SIC_KE
CALL SIC_CH (LINE,IOPT,IARG,ARGUM,LARG,PRESENT,ERROR)
CALL SIC_KE (LINE,IOPT,IARG,ARGUM,LARG,PRESENT,ERROR)

• LINE Character*(*)
is the last command line processed from which arguments are to be retrieved.

• IOPT Integer
is the number of the option. 0 means the command. Options are numbered in the order
where they appear in the vocabulary array after the command name.

• IARG Integer
is the number of the argument of the option/command to be retrieved. 0 means the op-
tion/command itself.

• ARGUM (Type depending on the subroutine called)
is the argument to be returned

• LARG Integer
is the returned number of characters for SIC CH and SIC KE

• PRESENT Logical
is a logical indicating whether the argument must be present (.TRUE.) or not (.FALSE.).

• ERROR An logical error flag
which is set if either i) PRESENT = .TRUE. and the argument is missing or ii) a decoding
error occured.

SIC KE is like SIC CH, but expects a “keyword”, and thus returns the argument after upper case
conversion.

In addition there are other functions related to the arguments:
INTEGER FUNCTION SIC NARG(IOPT)

returns the number of arguments present for option IOPT.
LOGICAL FUNCTION SIC PRESENT(IOPT,IARG)

returns a logical value indicating the presence of the IARG-th argument of the IOPT-th option.
SUBROUTINE SIC AMBIGS(FACILITY,NAME,FULL,VOCAB,MVOC,IVOC,ERROR)

search for NAME in the vocabulary VOCAB, and returns the corresponding pointer IVOC in
the vocabulary and corresponding keyword FULL = VOCAB(IVOC) if NAME is a non-ambiguous
abbreviation of FULL.

• FACILITY Character*(*)
A character string containing the name of the calling subroutine. This string is printed
before any failure message (ambiguous or non existing keyword).



1.9. SIC CALLABLE ROUTINES 17

• NAME Character*(*)
The input name to be searched for in the vocabulary

• FULL Character*(*)
The complete keyword returned.

• IVOC Integer
The keyword number in the vocabulary.

• MVOC Integer
The number of keywords in the vocabulary.

• VOCAB Character*(*)(MVOC)
The vocabulary.

• ERROR Logical
An error flag set if the input name was ambiguous, invalid or not found in the vocabulary.

Typically, NAME will have been recovered by a call to SIC KE
INTEGER FUNCTION SIC LEN(IOPT,IARG)
returns the total length of the IARG-th argument of the IOPT-th option. Returns 0 if

SIC PRESENT(IOPT,IARG)=.FALSE.
INTEGER FUNCTION SIC START(IOPT,IARG)
returns a pointer to the address of the argument in the character string. Returns 0 if

SIC PRESENT(IOPT,IARG)=.FALSE.. This routine can be used with SIC LEN for special pro-
cessing of arguments, such as sexagesimal decoding.

SUBROUTINE SIC NEXT(LINE(NEXT:),ARGUM,LARG,NEXT)
This subroutine can be used for special processing of text with a syntax similar to com-

mand lines, i.e. text in which the delimiters are single spaces, strings being included between
double quotes. Provided it is called with the text restricted to the current delimiter position
LINE(NEXT:), it returns the position of the next delimiter NEXT (space, skipping strings), the
character string included between these delimiters, ARGUM and its length LARG. This string may
further be decoded as double precision value using routine SIC MATH or SIC SEXA, logical value
using routine SIC LOGICAL, or used as character constant.

1.9.3 Command Line Interpretor Subroutines

SUBROUTINE SIC ANALYSE (COMMAND,LINE,NLINE,ERROR)
This subroutine analyses the command line LINE, set up all the internal pointers for argument

retrieval, and returns the name of the command found. The line must have been formatted by
SIC FORMAT before being analysed. All active languages are considered, even the “Library Only”
languages

• COMMAND Character(LEN=*), Command name (returned)

• LINE Character(LEN=*), Line to be analysed. It is modified by SIC ANALYSE

• NLINE Integer. Current length of LINE, modified on return.

• ERROR Logical. Return error code



18 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

SUBROUTINE SIC FORMAT(LINE,NLINE)

This subroutine does an adequate formatting of any line for later processing by the sic
interpretor. It does not use any internal common of sic and thus may be accessed independently
and considered as a more general routine.

• LINE Character*(*), Line to be formatted.

• NLINE Integer, Current length of LINE. It is modified by SIC FORMAT and must be initial-
ized so that only trailing spaces appear in LINE after NLINE. A good policy is to initialize
NLINE to LENC(LINE).

1.9.4 All Purpose General Subroutines

Available subroutines:
SIC_LOWER SIC_PARSEF SIC_UPPER SIC_WPR
SIC_WPRN

Available functions (Obsolescent)
SIC_GETVM FREE_VM LENC

These routines are of more general use than sic itself.
SUBROUTINE SIC LOWER(LINE) - SIC UPPER(LINE)

Converts the string LINE to lower or upper case letters respectively.
SUBROUTINE SIC PARSEF (NAME,FILE,DEF,EXT)

Parses the file name FILE for a default directory DEF and extension type EXT. These item are
added to FILE if needed, and NAME returns the short NAME of the file, that is, the name without
extension or directory. All arguments are Character*(*). This is the standard way to obtain a file
name in the gildas environment: this routine takes care of logical names (in the SIC meaning).

SUBROUTINE SIC WPR(PROMPT,LINE)

Reads the string LINE with the prompt PROMPT. It tries to obtain a non-blank string, prompt-
ing again if it reads a blank string. If it receives a <^Z> code, it returns the string "EXIT". The
prompt is automatically disabled if the session is not interactive.

• PROMPT Character*(*), Unchanged by SIC WPR

• LINE Character*(*), Returned line.

SUBROUTINE SIC WPRN(PROMPT,LINE,N)

Reads the string LINE with the prompt PROMPT. Returns N the number of characters read.
Returns N=0 if it reads a blank line, or receives a <^Z> code. The prompt is automatically
disabled if the session is not interactive.

• PROMPT Character*(*), Unchanged by SIC WPRN

• LINE Character*(*), Returned line.

• N Integer, Number of characters in LINE



1.10. OBSOLESCENT FEATURES 19

1.9.5 Symbol Manipulation Routines

Three routines are available to define, translate and delete symbols within a program using sic
without using the SYMBOL command.

SUBROUTINE SIC SETSYMBOL(SYMBOL,TRANSLATION,ERROR)
Defines a symbol of name SYMBOL (Character*(*), maximum 12 characters), translation

TRANSLATION (Character*(*), maximum 132 characters). An error flag (ERROR logical) is re-
turned if the symbol could not be defined. Any previous definition is overridden.

SUBROUTINE SIC GETSYMBOL(SYMBOL,TRANSLATION,ERROR)
Obtains the current translation of a given symbol. If TRANSLATION is too short, the translation

is truncated without warning or error. ERROR is returned if the symbol is undefined only.
SUBROUTINE SIC DELSYMBOL(SYMBOL,ERROR)
Deletes a symbol definition. ERROR is returned if the symbol was not defined.

1.10 Obsolescent Features

1.10.1 Function

INTEGER FUNCTION LENC(LINE)
Returns the “current” length of the string LINE, that is the position of the last significant

character. It thus allows to ignore trailing blanks. It is obsolescent, as the Fortran-90 intrinsic
LEN TRIM provides the same functionality.

INTEGER FUNCTION SIC GETVM(N32,ADDR)
SIC GETVM allocates virtual memory for N32 32-bit words, and returns the allocated address

space into the KIND=ADDRESS LENGTH variable ADDR. SIC GETVM is set to 1 in case of success, to
other values otherwise.

SUBROUTINE FREE VM(N32,ADDR)
FREE VM can be used to free the corresponding adress space when no longer needed.
SIC GETVM and FREE VM use is being deprecated, as the ALLOCATE/DEALLOCATE mech-

anism of Fortran-90 offers an equivalent functionality.

1.10.2 Routines for Library usage (Obsolescent, for record only)

SIC OPT (PROMPT,LOGFILE,MEMORY)
This routine is not compulsory. It is used to set the prompt the log file name and the stack

usage. This routine only changes the prompt if called after SIC BEGIN.

• PROMPT Character*(*).
The prompt to be used in interactive mode, truncated to 8 characters if necessary. Default
is SIC. Note that the caret > and other alterations such as : or 1> are added by sic at run
time and should not be included.

• LOGFILE Character*(*).
The log file name. Default is LOG.

• MEMORY Logical.
Indicates whether the Stack is used or not.

SIC RUN (LINE,LANG,COMMAND,ERROR,ICODE,OCODE)



20 CHAPTER 1. SIC PROGRAMMING MANUAL - PARTIALLY UPDATED ON OCT.2008

This subroutine is used to enter SIC, retrieve and analyse a command line for further exe-
cution. All sic possibilities, including execution levels and error recoveries, made accessible (In
particular, the LINE command line can be a call to a macro file).

• LINE Character*(*) (maximum size is 2048)
Command line to be executed. Modified by sicṄo need to initialize it when ICODE = 0
or 1, but must be initialized is ICODE = -1 or 2

• LANG Character*12
Name of the language returned by sic

• COMMAND Character*12
Name of the command returned by sic

• ERROR Logical
Return error code

• ICODE Operation code

– ICODE = -1
Analyse the command line passed as argument LINE, and return to calling program
to execute it.

– ICODE = 0
Loop into SIC to retrieve a new command line LINE, and return to calling program
to execute it.

– ICODE = 1
Start SIC, and retrieve a first command line.

– ICODE = 2
Start SIC, analyse the command line passed as argument, and return to calling pro-
gram to execute it.

• OCODE Return code

– OCODE = -1
End of execution in sub-routine mode. Program must return immediately to its caller.

– OCODE = 0
Successful analysis of a command. Program must execute it, and then loop again on
SIC RUN with ICODE=0 to get further commands.

– OCODE = 1
End of execution caused by typing the EXIT command. Program should perform any
necessary action (close files, etc...) and return to its caller.



Chapter 2

GreG Programming Manual

Partially updated in Oct 2008. Need more details about loading GreG.
This section describes how greg normally used as an interactive plot utility, can also be used

as a high level plot library. greg can be used exactly as a standard graphic library, but because
of the possibilities of the command line monitor, many other possibilities are accessible.

Before presenting in detail the “Library Version” of greg we should distinguish between
three different possible applications of the greg Library :

1. The occasional user who has a single repetitive graphic problem which is part of another
complex program. Interactive control is not wanted. This case can often be solved using
command procedures and sic images as data format when formatted I/O is definitely too
slow. This is very efficient and flexible. If the user already discarded this possibility, he
(she) most likely wants the simplest programming ever possible, will be satisfied by standard
default values, and is not really worried about optimum efficiency.

2. A programmer wanting to solve a single repetitive graphic problem for use by other people.
Interactive action is not wanted. Simple programming is of little importance, but efficiency
is a major problem.

3. A programmer wishing to integrate elaborate and flexible graphic applications as part of a
more complete data analysis system. Interactive control by the user and error recovery are
necessary. Then all greg capabilities are wanted, and in addition this programmer may
well be interested to use the possibilities of the sic monitor to “supervise” the data analysis
system.

The library version of greg allows all three cases to be solved adequately by offering three
different ways to call greg services :

1. Passing a command to greg using the routine GR EXEC
GR EXEC(’Command Argument/Option’) will execute the command line exactly as if you
had typed it interactively. Instead of GR EXEC, it is recommended to use GR EXEC1,
GR EXEC2 and GR EXECL for commands of languages GREG1, GREG2 and GTVL respec-
tively.

2. Calling an intermediate formatting routine which generates the appropriate call to GR EXEC
from its own arguments. Special entries are used to process possible options. The advantage
of this mode is to provide a more standard program interface. Not all commands will be
accessible in that way, and it is marginally slower than the previous mode.

21



22 CHAPTER 2. GREG PROGRAMMING MANUAL

3. Calling subroutines which do not correspond to greg commands but directly generates
plot actions. This way is the most optimized access, since it bypasses the command line
interpreter. However, only standard things can be done like this, and it requires some
precautions because of the segmented nature of the graphic library.

All three ways can be used within a single program, and the choice between one or the other
is just a matter of convenience and/or efficiency.

In addition, the greg plot library can be used either as a classic package of subroutines
(“Library Only”), or as an interactive facility allowing user control at run time by means of the
sic monitor possibilities (“Interactive”). The two modes can be mixed in a subroutine, with the
important restriction that the “Library Only” mode is just a subset of the “Interactive” mode.
It is not possible to change the mode during program execution. A program using greg plot
library in “Interactive” mode in fact appears as a superset of the greg interactive utility.

2.1 Interaction with FORTRAN programs

For a normal user, it can be said that greg does not interfere at all with a FORTRAN program.
All interactions with a program concern the system or sic facilities as detailed below.

• I/O Units :
All logical units used by the greg system and the associated sic monitor are FORTRAN
units between 50 and 99. Programs using sic should avoid opening such units, or should
get available units through calls to SIC GETLUN.

• Work Space :
greg uses as much as possible the concept of virtual memory. This means that work space,
when required, is allocated dynamically at run time. Hence, greg does not overload a small
program. There is currently one exception, the X,Y and Z buffers which have a fixed size
allocation of 10000 long-words each. This may change at some time. On large applications,
be sure that your virtual memory quota is large enough. Be sure also to run greg in a
large enough working set to reduce page faults.

• Special Handler :
The sic monitor always traps the ^C action to provide a facility to interrupt procedures at
any time. You can bypass this action by adequate programming (see SIC CTRLC routine in
the sic manual).

Programmers using sic as command monitor together with greg either in interactive or
in library mode, should be aware of the interaction between greg and sic command parsing
facility. Each call to GR EXEC, GR EXEC1, GR EXEC2, GR EXECL or EXEC GREG parses at least
one greg command line, and thus modify the pointers accessed by sic argument retrieving
routines. Accordingly, any subroutine implementing a user command should retrieve all its
arguments before calling a greg subroutine.

2.2 Basic Routines

1. LOAD GREG (Mode)
To be updated since the change of SIC initialization mode This subroutine must



2.3. LINKING 23

be called before any other reference to greg services. It is used to define the operating
mode and to initialize the greg vocabulary into the sic monitor. The argument is of type
Character and can be ’LIBRARY’ to initialize greg in the “Library Only” (no interactive
sic monitor) mode, or ’INTERACTIVE’ to initialize greg with all sic monitor capabilities.
Strings like ’LIBRARY GREG1’ or ’INTERACTIVE GREG2’ can be used to load only one lan-
guage, although the GREG2\ language requires GREG1\ to function. This routine does
not set the sic prompt, neither the Log File which you may specify by calling routine
SIC OPT. Please refer to the sic manual.

2. GR EXEC(LINE)
This is the basic routine for all plot actions. It is able to activate any greg command
exactly in the same way as if you had typed it during an interactive session. Use GR EXEC if
you do not know to which of the greg languages it pertains, GR EXEC1,2 or L according
to the language if you know (and you should). The command line must not include the
language field. The command is not written to the sic stack, neither to the Log File.

3. GR ERROR()
This logical function allows error recovery. It returns the internal error status of greg
program, and clears it. If another greg subroutine is called while an error status exist,
program execution aborts.

4. EXEC GREG(LINE)
Obsolescent, use EXEC COMMAND or EXEC PROGRAM instead execute a
command line which can be either a greg command or a sic command (like ’@ PROC’
for example). Control returns to the calling program when the command is completed
successfully. If an error occurs, the current sic error recovery action is activated before.
This is usually a PAUSE which gives interactive control to the user ; control will then return
to the calling program only after command EXIT (or ^Z) has been typed. Contrary to
GR EXEC, the command is written to the sic stack, and to the Log File. “Interactive” mode
is required.

Only GR EXEC (or its variant) and GR ERROR are allowed in Library Mode.

2.3 Linking

2.3.1 UNIX systems

To be updated with current information on architecture under Linux
To access greg from your Fortran Program, you need to link to several libraries. All greg

libraries are located in $GAG ROOT/lib where $GAG ROOT is an environment variable defining where
the gildas software is located. See your local gildas expert for that.

Then you should use the following link command to link your program

f77 -o Program Program.f -L/usr/lib/X11 -L$GAG_ROOT/lib \
-lgdf -lGREG -lcontour -lgtlang -lchar -lsic -limage -lgag -lrary \
-lX11 -lm -lc

where
f77 is the Fortran compiler/linker



24 CHAPTER 2. GREG PROGRAMMING MANUAL

Program.f is your Fortran program.
/usr/lib/X11 indicates where the X11 libraries are located
-lm -lc are required on some systems

On some systems, the greg libraries are shareable, thus avoiding code to be included in your
own programs.

2.4 Running

If you are using greg in “Library Only” mode, you can just run your program normally.
If you are using the “Interactive” mode you need to provide the assignments of greg help

files and working files to your program. All compulsory assignments are made system wide, so
you can just run the program. You will obtain help for the sic command monitor and a log file
will be written in .gag/logs .

2.5 Example

No simple working example is available as of today. See the mapping program for a more
exhaustive example.

2.6 Array Transfer

Subroutines with data arrays transferred to or obtained from greg have a Real*4 and a Real*8
version. The simple precision has a name beginning by GR4 , the double precision a name be-
ginning by GR8 . In the argument list description, REAL will mean Real(KIND=4) for the GR4
version, Real(KIND=8) for the GR8 . These routine work by copying the data. For really big
arrays, it is more efficient to transfer the information by reference, though SIC variables (see the
SIC manual).

2.6.1 GR4 GIVE - GR8 GIVE

GR4 GIVE(NAME,NXY,ARRAY)

This subroutine passes One-Dimensional array ARRAY to greg as the X, Y, or Z array ac-
cording to the given NAME. It is the optimal way to initialize the One-Dimensional arrays of greg
with the data you have computed within your application program.

NAME is CHARACTER(LEN=1) and may be X, Y or Z
NXY is the number of values set in ARRAY
ARRAY is a REAL array of size NXY.

2.6.2 GR4 GET - GR8 GET

GR4 GET(NAME,NXY,ARRAY)

This subroutine is the reverse of the GR4(8) GIVE routines. It passes One-Dimensional array
ARRAY from greg to your program as the X, Y, or Z array according to the given NAME. It allows
to benefit in your program of the flexible input formats of greg .



2.7. IMMEDIATE ROUTINES 25

NAME is CHARACTER(LEN=1) and may be X, Y or Z Input
NXY dimension of ARRAY Input

number of values returned in ARRAY Output
ARRAY is a REAL array of size NXY Output

2.6.3 GR4 RGIVE - GR8 RGIVE

GR4 RGIVE(NX,NY,CONV,R)

This subroutine passes a two-Dimensional array to greg as the Regular Grid array used for
mapping.

NX,NY Integers, array dimensions
CONV Real(KIND=8) array of dimension 6

It contains respectively
CONV(1) Reference pixel in X (First dimension of R)
CONV(2) X User coordinate value at CONV(1)
CONV(3) X User coordinate increment per pixel (may be negative)
CONV(4)-CONV(6) same as above for Y (Second dimension of R)

R REAL array (NX,NY) to be transferred.

If R is Real(KIND=4), the array is not physically copied but its address is computed by greg
for later use. greg will not modify anything in it. If of type Real(KIND=8), virtual memory is
allocated to create a Real(KIND=4) array of same dimensions.

2.6.4 GR4 LEVELS - GR8 LEVELS

GR4 LEVELS(NL,LEVELS)

This subroutine initializes a set of contour levels for mapping by greg . LEVELS is a REAL
array of dimension NL.

2.7 Immediate Routines

The following routines do not use the sic command line interpretor. They are essentially internal
greg routines made available to the user, and are thus very efficient to use. As above, they have
a KIND=4 and a KIND=8 version.

For optimization purposes, these routines do not include any explicit segmentation of the
plot. In order to be consistent with the philosophy of the interactions between greg and the
GTVIRT graphic library, you must enclose a set of calls to the immediate routines between a call
to GR SEGM and GR OUT. Ex:

CALL GR_SEGM(’Nom’,ERROR) ! Close current graphic segment and open
! a new one

CALL GR4_CONNECT (...) ! Fill this segment with plot coordinates
CALL GR4_MARKER (...) ! etc..
CALL GR_OUT ! Make the segment visible on screen



26 CHAPTER 2. GREG PROGRAMMING MANUAL

2.7.1 GR SEGM

GR SEGM(NAME,ERROR
Close the current graphic segment and open a new graphic segment with the current plotting

attributes selected by PENCIL. All the commands of greg open at least one new segment, but
the immediate routines do not. This routine must be called prior to calling a series of immediate
routines to ensure that the plot will appear with the currently selected graphic attributes, and
to allow a selective erasure of the plot. NAME is a character string indicating the desired name
of the segment, and ERROR a logical error flag. All plot request issued between two successive
calls to GR SEGM will make a single graphic segment. Note however that every greg command
having an effective plot action creates one or more graphic segments.

2.7.2 GR OUT

GR OUT
Updates the graphic output. This routine must be called when you wish to make visible a

series of calls to the immediate routines.

2.7.3 DRAW - RELOCATE

DRAW(XU,YU) RELOCATE(XU,YU)
Basic pen down or up movement in User coordinates (Real(KIND=8) values). There is no

Real(KIND=4) version.

2.7.4 GDRAW - GRELOCATE

GDRAW(X4,Y4) GRELOCATE(X4,Y4)
Basic pen down or up movement in Physical coordinates (Real(KIND=4) values). There is

no Real(KIND=8) version.

2.7.5 GR4 PHYS USER - GR8 PHYS USER

GR4 PHYS USER (XP,YP,XU,YU,NXY)
Convert Physical coordinates (XP,YP always Real(KIND=4) values) to User coordinates

(XU,YU, REAL values). NXY is the number of values.

2.7.6 GR4 USER PHYS - GR8 USER PHYS

GR4 USER PHYS(XU,YU,XP,YP,NXY)
Convert User coordinates (XU,YU, REAL values) to Physical coordinates (XP,YP, always

Real(KIND=4) values). NXY is the number of values.

2.7.7 GR4 CONNECT - GR8 CONNECT

GR4 CONNECT(NXY,X,Y,BVAL,EVAL)
This subroutine connects all data points represented by the X and Y arrays passed in argu-

ments. BVAL and EVAL are used for blanked values. EVAL negative means no blanking.

Arguments :
NXY INTEGER Input



2.7. IMMEDIATE ROUTINES 27

X REAL (NXY) Input
Y REAL (NXY) Input
BVAL REAL Input
EVAL REAL Input

2.7.8 GR4 HISTO - GR8 HISTO

GR4 HISTO(NXY,X,Y,BVAL,EVAL)

Arguments :
NXY INTEGER Input
X REAL (NXY) Input
Y REAL (NXY) Input
BVAL REAL Input
EVAL REAL Input

2.7.9 GR4 MARKER - GR8 MARKER

GR4 MARKER(NXY,X,Y,BVAL,EVAL)

Markers of current size are plotted at each data point.

Arguments :
NXY INTEGER Input
X REAL (NXY) Input
Y REAL (NXY) Input
BVAL REAL Input
EVAL REAL Input

2.7.10 GR4 CURVE - GR8 CURVE

GR4 CURVE(NXY,X,Y,Z,VAR,PER,BVAL,EVAL,ERROR)

Plots a smooth curve from the (X,Y) values using the requested interpolant. Z is either a
dummy argument or a parameter for the curve representation depending on the VAR value. VAR
indicates which is the variable to use for interpolation. PER indicates whether the curve is periodic
or not. BVAL and EVAL define the blanking value and the blanking tolerance (set EVAL negative
to disable blanking checking). ERROR is an error flag set if the curve could not be produced. The
current accuracy is used for the interpolation.

Arguments :
NXY INTEGER Input
X REAL (NXY) Input
Y REAL (NXY) Input
VAR CHARACTER*(*) Input
PER LOGICAL Input
BVAL REAL Input
EVAL REAL Input
ERROR LOGICAL Output



28 CHAPTER 2. GREG PROGRAMMING MANUAL

2.7.11 GR4 EXTREMA - GR8 EXTREMA

GR4 EXTREMA(NXY,X,BVAL,EVAL,XMIN,XMAX,NMIN,NMAX)
Compute the extrema of the input array avoiding blanked values.

Arguments :
NXY INTEGER Input Number of points
X REAL (NXY) Input Array
BVAL REAL Input Blanking value
EVAL REAL Input Tolerance on blanking
XMIN REAL Output Minimum value
XMAX REAL Output Maximum value
NMIN INTEGER Output Pixel of the minimum X(NMIN) = XMIN
NMAX INTEGER Output Pixel of the maximum

2.7.12 GR8 BLANKING

GR8 BLANKING(BVAL,EVAL)
Define the blanking value to be used later. It is equivalent to call GR EXEC(’SET BLANKING

BVAL EVAL’), but the later form requires formatting of values.

Arguments :
BVAL REAL Input Blanking value
EVAL REAL Input Blanking precision

2.7.13 GR8 SYSTEM - GR8 PROJEC

GR8 SYSTEM (ICODE)
GR8 PROJEC (X,Y,A,ICODE)
Define respectively the coordinate projection system and the projection constants. The

SYSTEM code can be 1 for UNKNOWN, 2 for EQUATORIAL (1950.0), 3 for GALACTIC. The projection
code is 0 for NONE, 1 for GNOMONIC, 2 for ORTHOGRAPHIC, 3 for AZIMUTHAL, 4 for STEREOGRAPHIC,
5 for LAMBERT cylindrical, 6 for AITOFF equal area and 7 for RADIO (also known as global SINU-
SOIDAL) projection.

Arguments :
ICODE INTEGER Input
X REAL Input Projection center
Y REAL Input Projection center
A REAL Input Projection Angle

2.7.14 GR4 RVAL

GR4 RVAL(XU,YU,Z4)
Returns a map value at a given point in user coordinates.

Arguments :
XU REAL*8 Input
YU REAL*8 Input
Z4 REAL*4 Output



2.8. THE CURSOR ROUTINE 29

2.7.15 GR WHERE

GR WHERE(XU,YU,X4,Y4)
Returns the pen position with the same conventions as GR CURS

Arguments :
XU R*8 X User coordinates Output
YU R*8 Y User coordinates Output
X4 R*4 X Plot coordinates Output
Y4 R*4 Y Plot coordinates Output

2.7.16 GR8 TRI

GR8 TRI(X,INDEX,N,*)
Sorting program that uses a quicksort algorithm. Applies for an input array of Real(KIND=8)

values which is reordered. It also returns an array of indexes sorted for increasing order of X.
You can use GR8 SORT to reorder other arrays associated with X.

Arguments :
X R*8(*) Unsorted/Sorted array Input/Output
INDEX I(*) Integer array of sorted indexes Output
N I Length of arrays Input
* Label Error return

2.7.17 GR8 SORT

GR8 SORT(X,XSORT,INDEX,N)
Reorder a real*8 array using the sort indexes computed by GR8 TRI. Note that X and XSORT

must be different (i.e. sorting cannot take place within the same array).

Arguments :
X R*8(*) Unsorted/Sorted array Input/Output
XSORT R*8(*) Sorted array Work space
INDEX I(*) Integer array of sorted indexes Input

(obtained by GR8_TRI)
N I Length of arrays Input

2.7.18 GR CLIP

LOGICAL FUNCTION GR CLIP(clip)
Turn on (CLIP = .TRUE.) or off (CLIP = .FALSE.) clipping of lines, and return current

status in GR CLIP. By default, clipping is on. Caution : some greg subroutines force clipping off
and reset it on upon exit.

2.8 The cursor routine

GR CURS (XU,YU,X4,Y4,CODE)
Calls the interactive graphic cursor and returns its position when you hit any alphanumeric

key on the keyboard.



30 CHAPTER 2. GREG PROGRAMMING MANUAL

Arguments :
XU REAL*8 X User coordinates Output
YU REAL*8 Y User coordinates Output
X4 REAL*4 X Plot coordinates Output
Y4 REAL*4 Y Plot coordinates Output
CODE CHARACTER*1 Character struck Output

The subroutine returns CODE = ’E’ when an error occurs.
For X-Window terminals, button 1 returns ˆ , 2 returns & and 3 returns ∗.

2.9 greg High-Level Subroutines

These routines essentially format the command line to pass it later to the GR EXEC subroutine,
and are thus the less efficient routines of the greg library. They are provided essentially for
user convenience because the formatting needed to use GR EXEC might be tedious. Note all greg
commands have the high level equivalent, but all can be used with GR EXEC.

Each subroutine corresponds to a command, and each entry corresponds to an option of
that command. The subroutine and entry names are built from the 4 first characters of the
corresponding command and option names. The entries must be called before the subroutine,
since it is this one which effectively transmit the command to GR EXEC.

The conventional type of arguments are

NAME Character
ARG,ARG1,... Real*8
IARG,IARG1,... Integer*4
NARG Integer*4

When NARG is present, all arguments need not be passed : trailing arguments may be omitted.
NARG is used to give the actual number of arguments passed after NARG itself and it must be set
precisely. All arguments before NARG, usually the character string NAME, and the argument NARG
must always be present (even if NAME=’ ’). Note that if ARG1 is missing, ARG2 cannot be present.
Note also that the double quotes should not be passed for character strings. For instance, the
interactive command LABEL ‘‘A little toy’’ should be replaced by CALL GR LABE(’A little
toy’).

Example : CALL GR DRAW (’MARKER’, 2, 0.3D0, 0.8D0)
Note that the ARG1 and ARG2 arguments are here expressed as constants, and the D exponent

is required as they must be Real*8 values.
The high level routines are not yet fully guaranteed as up to date. In the following description,

each high level subroutine is preceeded by the assumed syntax for the equivalent command. If
this syntax differs from the current internal help description, using the discrepant parts of the
high level routine will cause a fatal error, but common parts of the syntax can be used safely.

For the GTVL language, the following routines are available

CLEAR [Argument]
SUBROUTINE GR_CLEA(NAME)

DEVICE [Type [Descriptor]] [/OUTPUT Logical_Name]
SUBROUTINE GR_DEVI(NAME)
All arguments of command DEVICE being character strings, it is
easy to concatenate them into NAME.



2.9. GREG HIGH-LEVEL SUBROUTINES 31

For the GREG1 language, the routines are

AXIS Name [A1 A2] [/LOCATION X Y] [/TICK Orientation [BIG SMALL]]
[/LABEL Position] [/[NO]LOG] [/ABSOLUTE]
SUBROUTINE GR_AXIS(NAME,NARG,ARG1,ARG2) ! 28-Sep-1986
ENTRY GR_AXIS_LOCA(NARG,ARG1,ARG2)
ENTRY GR_AXIS_TICK(NAME,NARG,ARG1,ARG2)
ENTRY GR_AXIS_LABE(NAME)
ENTRY GR_AXIS_LOG
ENTRY GR_AXIS_NOLO
ENTRY GR_AXIS_ABSO

BOX [Arguments]
SUBROUTINE GR_BOX(NAME) ! 28-Sep-1986
ENTRY GR_BOX_ABSO

COLUMN [X Nx] [Y Ny] [E Ne] [/FILE File] [/LINES Lmin [Lmax]]
[/TABLE TableName]
SUBROUTINE GR_COLU(NAME) ! 28-Sep-1986
As this routine is normally of no use in the library version,
it requires you to code explicitly the remaining part of the
command line. Hence, it should be equivalent to use
either GR_EXEC(’GREG1\COLUMN ’//NAME)
or GR_EXEC1(’COLUMN ’//NAME)

CONNECT [/BLANKING Bval Eval] ! 28-Sep-1986
SUBROUTINE GR_CONN
ENTRY GR_CONN_BLAN(NARG,ARG1,ARG2)

DRAW [Action [X Y]] [/USER] [/BOX N] [/CHARACTER N] [/CLIP]
SUBROUTINE GR_DRAW(NAME,NARG,ARG1,ARG2)
ENTRY GR_DRAW_CHAR(NARG,IARG)
ENTRY GR_DRAW_USER
ENTRY GR_DRAW_BOX(NARG,IARG)
ENTRY GR_DRAW_CLIP

Note that no support is given for DRAW TEXT and DRAW FILL_AREA,
unless you specify in NAME all the arguments and set NARG to 0.
DRAW TEXT can easily be replaced by GR_DRAW(’RELOCATE’...)
followed by a call to GR_LABE.

ERRORBAR NAME
SUBROUTINE GR_ERRO(NAME) ! 28-Sep-1986

HISTOGRAM [/BASE [Ybase]] [/BLANKING Bval Eval]
SUBROUTINE GR_HIST ! 28-Sep-1986
ENTRY GR_HIST_BASE(ARG)



32 CHAPTER 2. GREG PROGRAMMING MANUAL

ENTRY GR_HIST_BLAN(NARG,ARG1,ARG2)

LABEL "String" [/X] [/Y] [CENTERING N] [/APPEND]
SUBROUTINE GR_LABE(NAME) ! 28-Sep-1986
ENTRY GR_LABE_X
ENTRY GR_LABE_Y
ENTRY GR_LABE_CENT(IARG)
ENTRY GR_LABE_APPE

LIMITS [Xmin Xmax Ymin Ymax] [/XLOG] [/YLOG] [/RGDATA] [/REVERSE [X] [Y]]
[/BLANKING Bval Eval]
SUBROUTINE GR_LIMI(NARG,ARG1,ARG2,ARG3,ARG4) ! 28-Sep-1986
ENTRY GR_LIMI_XLOG
ENTRY GR_LIMI_YLOG
ENTRY GR_LIMI_RGDA
ENTRY GR_LIMI_REVE(NAME)
ENTRY GR_LIMI_BLAN(NARG,ARG1,ARG2)
Arguments of GR_LIMI can be omitted with the standard VAX
convention to indicate that automatic limit must be computed
for this one. For example

CALL GR_LIMI_XLOG
CALL GR_LIMI(4,0.d0, ,-10.d0,10.d0)

is equivalent to
CALL GR_EXEC1(’LIMITS 0 * -10 10/XLOG’)

Presently, there is no support for the fifth argument (Angular
unit or Absolute coordinates) and for the =, < and > possibilities
of command LIMITS in this High Level routine. To use these
possibilities, you should use directly GR_EXEC1(’LIMITS ...’).

PENCIL [N] [/COLOUR C] [/DASHED D] [/WEIGHT W] [/DEFAULT]
SUBROUTINE GR_PEN(NARG,IARG) ! 28-Sep-1986
ENTRY GR_PEN_DASH(IARG)
ENTRY GR_PEN_WEIG(IARG)
ENTRY GR_PEN_COLO(IARG)
ENTRY GR_PEN_DEFA

POINTS [Size] [/BLANKING Bval Eval]
SUBROUTINE GR_POIN(NARG,ARG1)
SUBROUTINE GR_POIN_BLAN(NARG,ARG1,ARG2)

RULE [X] [Y] [/MAJOR [/MINOR]
SUBROUTINE GR_RULE(NAME) ! 28-Sep-1986
ENTRY GR_RULE_MAJO
ENTRY GR_RULE_MINO

SET Something [Value1 [Value2]...]]]
SUBROUTINE GR_SET(NAME,NARG,ARG1,ARG2,ARG3,ARG4) ! 28-Sep-1986



2.9. GREG HIGH-LEVEL SUBROUTINES 33

SHOW
SUBROUTINE GR_SHOW(NAME) ! 28-Sep-1986

TICKSPACE SmallX BigX SmallY BigY ! 28-Sep-1986
SUBROUTINE GR_TICK(NARG,ARG1,ARG2,ARG3,ARG4)

The following commands correspond to the GREG2\ Language.

EXTREMA [/BLANKING Bval Eval] [/PLOT]
SUBROUTINE GR_EXTR ! 28-Sep-1986
ENTRY GR_EXTR_BLAN(NARG,ARG1,ARG2)
ENTRY GR_EXTR_PLOT

LEVELS List
SUBROUTINE GR_LEVE(NAME)
Coding the list in the required format may be funny.
Use GR4_LEVELS or GR8_LEVELS instead, they are more convenient.

RGDATA File_Name [/SUBSET IX1 IY1 IX2 IY2]
SUBROUTINE GR_RGDA(NAME) ! 28-Sep-1986
ENTRY GR_RGDA_SUBS(NARG,IARG1,IARG2,IARG3,IARG4)

RGMAP [/ABSOLUTE Value] [/PERCENT Value] [/KEEP] [/BLANKING Bval Eval]
[/GREY Colour Ntry] [/PENS Pos Neg]
SUBROUTINE GR_RGMA ! 28-Sep-1986
ENTRY GR_RGMA_ABSO(ARG)
ENTRY GR_RGMA_PERC(ARG)
ENTRY GR_RGMA_BLAN(NARG,ARG1,ARG2)
ENTRY GR_RGMA_KEEP
ENTRY GR_RGMA_PENS(NARG,IARG1,IARG2)
No support is yet given for option /GREY because it is still
rather experimental.

Remember that if anything available in interactive seems to be missing in the previous list,
you can always use GR EXEC to access it.



34 CHAPTER 2. GREG PROGRAMMING MANUAL



Chapter 3

Task Programming Manual

CAUTION: This section has NOT yet been FULLY updated for the Gildas
Data Format Version 2 (GDFV2). Please refer to the sic-gdfv2 document.
More information is given in each section.

3.1 General Outline and Data Structure of Images

Section basically up to date
The gildas software is designed to work in an heterogeneous network, where each computer

may have its own floating point and integer number representation and its own operating system.
Images created on any computer should be accessible transparently from any other computer in
the network.

To allow such a portability and yet preserve efficiency when working on a single type of ma-
chines, all files are written in the binary representation of the machine on which they were created.
A library of subroutines is used to access the images and perform the necessary format conversion
between the different representations of real and integer numbers. So far, 3 representations are
recognized: VAX format (a dead dinosaur...), IEEE format (the so-called big-endians, like DEC
DS Workstation, Intel & AMD PCs and most affordable current computers) and EEEI format
(big-endians, like Sun SparcStation, IBM RS-6000 series, and other obsolescent machines...).

The images have the following organization :

• Images are basically direct access files with a logical blocksize of 512 bytes. This correspond
to the system block size on VAX-VMS machines.

• The first block is a header block, defining the size of the image and all major parameters,
such as World Coordinate System definition.

• The following blocks containing the image array itself.

• There may be trailing blocks for additional information. These trailing blocks are not
compulsory, and may be ignored by the processing software.

• the number of logical blocks is rounded upwards to a multiple of 16 blocks, to allow reading
with 8192 byte blocks.

The header starts with ’GILDAS’, followed by one character which indicates the type of
integer and floating point number representation

35



36 CHAPTER 3. TASK PROGRAMMING MANUAL

• The inferior sign “>” for swapped IEEE machines (big-endians, IBM RS-6000, SUN Sparc,
etc...), with a 64-bit header (so-called GDFV2 data version)

• The superior sign “<” for non-swapped IEEE machines (little-endians) with a 64-bit header
(so-called GDFV2 data version)

• Underscore “ ” for VAX machines

• Dot “.” for swapped IEEE machines (IBM RS-6000, SUN Sparc, etc...)

• Minus “-” for non-swapped IEEE machines (DEC DS series)

The last 3 cases are inherited from the GDFV1 data version, in which all size informations were
limited to 32-bit numbers. The latest GDFV2 data version has some integers using 64 bit values
to handle large data sets.

After the version/hardware sign, an extra text indicates the type of information in the image:

• IMAGE for all images (up to 4-D arrays)

• UVFIL for UV tables

This character string, being human readable, is intended for quick checks, but a more specific
information about the actual type of data file is available through an integer code in the data
header.

3.2 Fortran-90 access to images

Section basically up to date
Fortran-90 allows definition of data structures (derived types) which are convenient to handle

data structures. Data access to GILDAS files is done by reading all or part of the data into
memory, using standard FORTRAN direct I/O. The header is read into a specific Fortran derived
type, the gildas derived part, which has a sub-type mimicking the file header plus ancillary
information re-organized for convenience. The data can be read into standard Fortran arrays.
Fortran pointers are provided as placeholders for this purpose in the gildas data type for rank
1 to 4 real arrays.

The portable version of the gildas software makes the distinction between an image and
the ”incarnation” of an image subset in memory. Each image has an associated ”Image Slot”
(IS), while each memory part has an associated ”Memory Slot” (MS). Several memory slots may
corresponds to several ”windows” into a single image slot.

The Fortran-90 module image def defines the gildas derived type.

!
module image_def
use gildas_def
use gbl_format
use gio_headers
!
!
type :: gildas

sequence



3.2. FORTRAN-90 ACCESS TO IMAGES 37

character(len=256) :: file = ’ ’ ! File name
type (strings) :: char !
type (location) :: loca !
type (gildas_header_v2) :: gil !
integer(kind=index_length) :: blc(gdf_maxdims) = 0 ! Bottom left corner
integer(kind=index_length) :: trc(gdf_maxdims) = 0 ! Top right corner
integer(kind=4) :: header = 0 ! Defined / Undefined
integer(kind=4) :: status = 0 ! Last error code
real, pointer :: r1d(:) => null() ! Pointer to 1D data
real(kind=8), pointer :: d1d(:) => null()
integer, pointer :: i1d(:) => null()
real, pointer :: r2d(:,:) => null() ! Pointer to 2D data
real(kind=8), pointer :: d2d(:,:) => null()
integer, pointer :: i2d(:,:) => null()
real, pointer :: r3d(:,:,:) => null() ! Pointer to 3D data
real(kind=8), pointer :: d3d(:,:,:) => null()
integer, pointer :: i3d(:,:,:) => null()
real, pointer :: r4d(:,:,:,:) => null() ! Pointer to 4D data
real(kind=8), pointer :: d4d(:,:,:,:) => null()
integer, pointer :: i4d(:,:,:,:) => null()

end type gildas
!

end module image_def
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The type gildas v2 closely mimicks the actual layout of the data file, but is ** not **
identical. Some of its content are provided as convenience to handle the quantities, but are **
not ** intended to be used directly in the application programs. The ijxyz((3) (where xyz can
be typ, lin, sou, sys, uni, cod) pseudo-integer arrays in particular should never be used
and may disappear in future releases (or become private). They correspond to the character
strings held in the derived type strings.

type :: gildas_header_v2
!
! Spread on two blocks
!
! Block 1: Basic Header and Dimension information
sequence
!
! Trailer:
integer(kind=4) :: ijtyp(3) = 0 ! 1 Image Type
integer(kind=4) :: form = fmt_r4 ! 4 Data format (FMT_xx)
integer(kind=8) :: ndb = 0 ! 5 Number of blocks
integer(kind=4) :: nhb = 2 ! 7 Number of header blocks
integer(kind=4) :: ntb = 0 ! 8 Number of trailing blocks
integer(kind=4) :: version_gdf = code_version_gdf_current ! 9 Data format Version number
integer(kind=4) :: type_gdf = code_gdf_image ! 10 code_gdf_image or code_null



38 CHAPTER 3. TASK PROGRAMMING MANUAL

integer(kind=4) :: dim_start = gdf_startdim ! 11 Start offset for DIMENSION, should be odd, >12
integer(kind=4) :: pad_trail
! The maximum value would be 17 to hold up to 8 dimensions.
!
! DIMENSION Section. Caution about alignment...
integer(kind=4) :: dim_words = 2*gdf_maxdims+2 ! at s_dim=17 Dimension section length
integer(kind=4) :: blan_start !! = dim_start + dim_lenth + 2 ! 18 Pointer to next section
integer(kind=4) :: mdim = 4 !or > ! 19 Maximum number of dimensions in this data format
integer(kind=4) :: ndim = 0 ! 20 Number of dimensions
integer(kind=index_length) :: dim(gdf_maxdims) = 0 ! 21 Dimensions
!
! BLANKING
integer(kind=4) :: blan_words = 2 ! Blanking section length
integer(kind=4) :: extr_start ! Pointer to next section
real(kind=4) :: bval = +1.23456e+38 ! Blanking value
real(kind=4) :: eval = -1.0 ! Tolerance
!
! EXTREMA
integer(kind=4) :: extr_words = 6 ! Extrema section length
integer(kind=4) :: coor_start !! = extr_start + extr_words +2 !
real(kind=4) :: rmin = 0.0 ! Minimum
real(kind=4) :: rmax = 0.0 ! Maximum
integer(kind=index_length) :: minloc(gdf_maxdims) = 0 ! Pixel of minimum
integer(kind=index_length) :: maxloc(gdf_maxdims) = 0 ! Pixel of maximum

! in file: integer(kind=8) :: mini = 0 ! Rank 1 pixel of minimum
! in file: integer(kind=8) :: maxi = 0 ! Rank 1 pixel of maximum

!
! COORDINATE Section
integer(kind=4) :: coor_words = 6*gdf_maxdims ! at s_coor Section length
integer(kind=4) :: desc_start !! = coord_start + coord_words +2 !
real(kind=8) :: convert(3,gdf_maxdims) ! Ref, Val, Inc for each dimension
!
! DESCRIPTION Section
integer(kind=4) :: desc_words = 3*(gdf_maxdims+1) ! at s_desc, Description section length
integer(kind=4) :: null_start !! = desc_start + desc_words +2 !
integer(kind=4) :: ijuni(3) = 0 ! Data Unit
integer(kind=4) :: ijcod(3,gdf_maxdims) = 0 ! Axis names
integer(kind=4) :: pad_desc ! For Odd gdf_maxdims only
!
!
! The first block length is thus
! s_dim-1 + (2*mdim+4) + (4) + (8) + (6*mdim+2) + (3*mdim+5)
! = s_dim-1 + mdim*(2+6+3) + (4+4+2+5+8)
! = s_dim-1 + 11*mdim + 23
! With mdim = 7, s_dim=11, this is 110 spaces
! With mdim = 8, s_dim=11, this is 121 spaces
! MDIM > 8 would NOT fit in one block...



3.2. FORTRAN-90 ACCESS TO IMAGES 39

!
! Block 2: Ancillary information
!
! The same logic of Length + Pointer is used there too, although the
! length are fixed. Note rounding to even number for the pointer offsets
! in order to preserve alignement...
!
integer(kind=4) :: posi_start = 1
!
! POSITION
integer(kind=4) :: posi_words = 15 ! Position section length: 15 used + 1 padding
integer(kind=4) :: proj_start !! = s_posi + 16 ! Pointer to next section
integer(kind=4) :: ijsou(3) = 0 ! 75 Source name
integer(kind=4) :: ijsys(3) = 0 ! 71 Coordinate System (moved from Description section)
real(kind=8) :: ra = 0.d0 ! 78 Right Ascension
real(kind=8) :: dec = 0.d0 ! 80 Declination
real(kind=8) :: lii = 0.d0 ! 82 Galactic longitude
real(kind=8) :: bii = 0.d0 ! 84 latitude
real(kind=4) :: epoc = 0.0 ! 86 Epoch of coordinates
real(kind=4) :: pad_posi
!
! PROJECTION
integer(kind=4) :: proj_words = 9 ! Projection length: 9 used + 1 padding
integer(kind=4) :: spec_start !! = proj_start + 12
real(kind=8) :: a0 = 0.d0 ! 89 X of projection center
real(kind=8) :: d0 = 0.d0 ! 91 Y of projection center
real(kind=8) :: pang = 0.d0 ! 93 Projection angle
integer(kind=4) :: ptyp = p_none ! 88 Projection type (see p_... codes)
integer(kind=4) :: xaxi = 0 ! 95 X axis
integer(kind=4) :: yaxi = 0 ! 96 Y axis
integer(kind=4) :: pad_proj
!
! SPECTROSCOPY
integer(kind=4) :: spec_words = 14 ! Spectroscopy length: 14 used
integer(kind=4) :: reso_start !! = spec_words + 16
real(kind=8) :: fres = 0.d0 !101 Frequency resolution
real(kind=8) :: fima = 0.d0 !103 Image frequency
real(kind=8) :: freq = 0.d0 !105 Rest Frequency
real(kind=4) :: vres = 0.0 !107 Velocity resolution
real(kind=4) :: voff = 0.0 !108 Velocity offset
real(kind=4) :: dopp = 0.0 ! Doppler factor
integer(kind=4) :: faxi = 0 !109 Frequency axis
integer(kind=4) :: ijlin(3) = 0 ! 98 Line name
integer(kind=4) :: vtyp = vel_unk ! Velocity type (see vel_... codes)
!
! RESOLUTION
integer(kind=4) :: reso_words = 3 ! Resolution length: 3 used + 1 padding



40 CHAPTER 3. TASK PROGRAMMING MANUAL

integer(kind=4) :: nois_start !! = reso_words + 6
real(kind=4) :: majo = 0.0 !111 Major axis
real(kind=4) :: mino = 0.0 !112 Minor axis
real(kind=4) :: posa = 0.0 !113 Position angle
real(kind=4) :: pad_reso
!
! NOISE
integer(kind=4) :: nois_words = 2 ! Noise section length: 2 used
integer(kind=4) :: astr_start !! = s_nois + 4
real(kind=4) :: noise = 0.0 ! 115 Theoretical noise
real(kind=4) :: rms = 0.0 ! 116 Actual noise
!
! ASTROMETRY
integer(kind=4) :: astr_words = 3 ! Proper motion section length: 3 used + 1 padding
integer(kind=4) :: uvda_start !! = s_astr + 4
real(kind=4) :: mura = 0.0 ! 118 along RA, in mas/yr
real(kind=4) :: mudec = 0.0 ! 119 along Dec, in mas/yr
real(kind=4) :: parallax = 0.0 ! 120 in mas
real(kind=4) :: pad_astr
! real(kind=4) :: pepoch = 2000.0 ! 121 in yrs ?
!
! UV_DATA information
integer(kind=4) :: uvda_words = 18+2*code_uvt_last ! Length of section: 14 used
integer(kind=4) :: void_start !! = s_uvda + l_uvda + 2
integer(kind=4) :: version_uv = code_version_uvt_current ! 1 version number. Will allow us to change the data format
integer(kind=4) :: nchan = 0 ! 2 Number of channels
integer(kind=8) :: nvisi = 0 ! 3-4 Independent of the transposition status
integer(kind=4) :: nstokes = 0 ! 5 Number of polarizations
integer(kind=4) :: natom = 0 ! 6. 3 for real, imaginary, weight. 1 for real.
real(kind=4) :: basemin = 0. ! 7 Minimum Baseline
real(kind=4) :: basemax = 0. ! 8 Maximum Baseline
integer(kind=4) :: fcol ! 9 Column of first channel
integer(kind=4) :: lcol ! 10 Column of last channel
! The number of information per channel can be obtained by
! (lcol-fcol+1)/(nchan*natom)
! so this could allow to derive the number of Stokes parameters
! Leading data at start of each visibility contains specific information
integer(kind=4) :: nlead = 7 ! 11 Number of leading informations (at lest 7)
! Trailing data at end of each visibility may hold additional information
integer(kind=4) :: ntrail = 0 ! 12 Number of trailing informations
!
! Leading / Trailing information codes have been specified before
integer(kind=4) :: column_pointer(code_uvt_last) = code_null ! Back pointer to the columns...
integer(kind=4) :: column_size(code_uvt_last) = 0 ! Number of columns for each
! In the data, we instead have the codes for each column
! integer(kind=4) :: column_codes(nlead+ntrail) ! Start column for each ...
! integer(kind=4) :: column_types(nlead+ntrail) /0,1,2/ ! Number of columns for each: 1 real*4, 2 real*8



3.2. FORTRAN-90 ACCESS TO IMAGES 41

! Leading / Trailing information codes
!
integer(kind=4) :: order = 0 ! 13 Stoke/Channel ordering
integer(kind=4) :: nfreq = 0 ! 14 ! 0 or = nchan*nstokes
integer(kind=4) :: atoms(4) ! 15-18 Atom description
!
real(kind=8), pointer :: freqs(:) => null() ! (nchan*nstokes) = 0d0
integer(kind=4), pointer :: stokes(:) => null() ! (nchan*nstokes) or (nstokes) = code_stoke
!
! back pointers to the ref,val,inc naming convention
real(kind=8), pointer :: ref(:) => null()
real(kind=8), pointer :: val(:) => null()
real(kind=8), pointer :: inc(:) => null()

end type gildas_header_v2

Access to images is very simple. It requires only 3 steps: i) to read the header from an
existing file, or to create a new header, ii) to allocate the data, iii) to read or write the data. An
example is given below.

program image_example
use image_def ! 1
use gkernel_interfaces
logical error
integer ier
character*32 name1,name2
!
type (gildas) :: input_image, output_image ! 2
real, allocatable :: dinput(:,:), doutput(:,:,:) ! 3
!
call gildas_open
call gildas_char(’INPUT$’,name1)
call gildas_char(’OUTPUT$’,name2)
call gildas_close
!
call gildas_null(input_image, type=’IMAGE’) ! 4
call sic_parsef (name1,input_image%file,’ ’,’.gdf’) ! 5
call gdf_read_header (input_image,error) ! 6
if (error) then

call gagout(’E-IMAGE_EXAMPLE, Error opening input file’)
call sysexi(fatale)

endif
allocate(dinput(input_image%gil%dim(1),input_image%gil%dim(2), &

stat=ier) ! 7
if (ier.ne.0) then

call gagout(’e-image_example, error allocating memory’)
call sysexi(fatale)

endif
call gdf_read_data (input_image, dinput, error) ! 8



42 CHAPTER 3. TASK PROGRAMMING MANUAL

if (error) then
call gagout(’E-IMAGE_EXAMPLE, error reading input file’)
call sysexi(fatale)

endif
!
! Create an output image
!-----------------------
call gdf_copy_header (input_image, output_image) ! 9
call sic_parsef (name2,output_image%file,’ ’,’.gdf’)! 10
output_image%gil%ndim = 3 ! 11
output_image%gil%dim(1) = input_image%gil%dim(1) ! 11
output_image%gil%dim(2) = input_image%gil%dim(2) ! 11
output_image%gil%dim(3) = 4 ! 11
allocate(doutput(output_image%gil%dim(1), &

output_image%gil%dim(2),output_image%gil%dim(3), &
stat=ier) ! 12

if (ier.ne.0) then
call gagout(’E-IMAGE_EXAMPLE, Error allocating memory’)
call sysexi(fatale)

endif
!
! Do something with the data
doutput(:,:,3) = dinput
!
! Write the output image
call gdf_write_image(output_image,doutput,error) ! 13
if (error) then

call gagout(’E-IMAGE_EXAMPLE, Error writing output file’)
call sysexi(fatale)

endif
!
deallocate(dinput,doutput)
end

1. USE the module containing the GILDAS derived type definitions

2. Define the input and output image headers

3. Define the input and output data as allocatable arrays

4. Initialize the input image header. Argument type is optional, and default to ‘‘IMAGE’’

5. Prepare the input file name, INPUT IMAGE%FILE

6. Read the header to initialize the INPUT IMAGE structure.

7. Allocate the data. Note that it is assumed here to be a 2-D array.

8. Read the data, using the information provided in the header structure (in particular the
file name).



3.3. GIO API 43

9. Define the output header, here by making a copy of the input header

10. Setup the output file name

11. Change the output header parameters as needed

12. Allocate the output image data

13. Create and write the output image

The subroutines using GILDAS headers are:

• SUBROUTINE GILDAS NULL(HEADER)
Initialize a header. No access to header components should be done before this,
as some variables are dangling pointers before initialization.

• SUBROUTINE GDF COMPARE SHAPE(FIRST,SECOND,EQUAL)
Compare the shape of the two images defined by the two headers

• SUBROUTINE GDF READ HEADER(IMAG,ERROR)
Read the image header. IMAG%FILE must have been initialized before.

• SUBROUTINE GDF UPDATE HEADER(IMAG,ERROR)
Update an image header: write the modified header to the image file.

• SUBROUTINE GDF COPY HEADER(INPUT,OUTPUT)
Copy an input header structure to an output header structure

• SUBROUTINE GDF TRANSPOSE HEADER(INPUT,OUTPUT,ORDER,ERROR)
Transpose a header according to given transposition code. This routine transposes the axes
information, but not the data.

3.3 GIO API

Missing section, see the sic-gdfv2 document.

3.4 Obsolete Fortran-77 access routines

Caution: These routines are obsolete. Documentation only provided for historical
reasons. It may disappear at some point or be moved to another document.
In Fortran-77, neither virtual memory handling, nor data structures, are part of the language.
We had written a number of routines to access images. These routines are more complex than
the new Fortran-90 method of access, and are provided here just for completeness.

To read a file requires six basic steps:

• allocation of an Image Slot using GDF GEIS.

• connection of an image to the slot using GDF REIS or GDF WRIS.

• reading the header using GDF RHSEC

• connection of a Memory Slot to the image (or a subset of it) using GDF GEMS



44 CHAPTER 3. TASK PROGRAMMING MANUAL

• once the Memory Slot is no longer needed, disconnection using GDF FRMS

• once the image slot is no longer required, disconnection using GDF FRIS

Creation of a new file is slightly different:

• allocation of an Image Slot using GDF GEIS

• preparatin of the header using e.g. GDF WHSEC

• creation of the image to the slot using GDF CRIS. The header is written at this stage.

• connection to the image (or a subset of it) using GDF GEMS

• once the Memory Slot is no longer needed, disconnection using GDF FRMS. This is the step
which actually does the writing.

• once the image slot is no longer required, disconnection using GDF FRIS

3.4.1 Image Slot Handling

SUBROUTINE GDF GEIS (IS,ERROR)

GDF GEt Image Slot
IS I Slot number Output
ERROR L Error flag Output

GDF GEIS returns a unique image slot number IS, for further use in all other GDF xxxx
routines.

SUBROUTINE GDF CLIS (IS,ERROR)

GDF CLose Image Slot
IS I Slot number Input
ERROR L Error flag Output

GDF CLIS close an image slot IS, disconnecting all associated memory slot after flushing all
pending updates on the image. The image slot IS stays reserved, but available for further
use.

SUBROUTINE GDF FRIS (IS,ERROR)

GDF FRee Image Slot
IS I Slot number Input
ERROR L Error flag Output

GDF CLIS free an image slot IS, disconnecting all associated memory slot after flushing all
pending updates on the image. The image slot IS should no longer be referenced in any
call after this operation.

INTEGER FUNCTION GDF STIS(IS)

GDF STatus of Image Slot
IS I Slot number Input

Return status of slot: -1 No such slot, 0 Empty (Not allocated), 1 Read (Opened for
ReadOnly), 2 Full (Allocated but not opened), 3 Write (Opened for ReadWrite).



3.4. OBSOLETE FORTRAN-77 ACCESS ROUTINES 45

3.4.2 Image Connection

Once a slot is reserved, it must be associated with an image. The following 4 routines connect
an image to a specified image slot IS, in one of the 4 possible access modes (CReate, EXtend,
REad only, Write and Read). No part of the image is immediately accessible after that, but the
image slot is ready for memory connection using GDF GEMS.

SUBROUTINE GDF CRIS (IS,GTYPE,NAME,FORM,SIZE,ERROR)

GDF CReate Image Slot
Arguments:

IS I Slot number Input
GTYPE C*(*) Image type Input
NAME C*(*) File name Input
FORM I Image format (Real,Integer...) Input
SIZE I Image size Input
ERROR L Error flag Output

Creates a new file from the information available in image slot IS. The internal header
should have been defined (through calls to GDF WHSEC) before, and is written on the new
file header.

SUBROUTINE GDF EXIS (IS,GTYPE,NAME,FORM,SIZE,ERROR)

GDF EXtend Image Slot
Arguments:

IS I Slot number Input
GTYPE C*(*) Image type Input
NAME C*(*) File name Input
FORM I Image format (Real,Integer...) Input
SIZE I Image size Input
ERROR L Error flag Output

This routine is used to change the size of an image, usually by increasing the last dimension
of the image. The new internal header must have been defined before in image slot IS, by
use of the GDF WHSEC routine.

SUBROUTINE GDF REIS (IS,GTYPE,NAME,FORM,SIZE,ERROR)

GDF REad Image Slot
Arguments:

IS I Slot number Input
GTYPE C*(*) Image type Output
NAME C*(*) File name Input
FORM I Image format (Real,Integer...) Output
SIZE I Image size Output
ERROR L Error flag Output

This routine is used to open an existing image for ReadOnly operations. The image is
available for file sharing.



46 CHAPTER 3. TASK PROGRAMMING MANUAL

SUBROUTINE GDF WRIS (IS,GTYPE,NAME,FORM,SIZE,ERROR)

GDF WRite Image Slot
Arguments:

IS I Slot number Input
GTYPE C*(*) Image type Output
NAME C*(*) File name Input
FORM I Image format (Real,Integer...) Output
SIZE I Image size Output
ERROR L Error flag Output

This routine is used to open an existing image for ReadWrite operations. The image is not
available for file sharing.

3.4.3 Memory Connection

After an image is connected, a part of it should be brought into virtual memory. The access type
for this virtual memory area (ReadOnly or ReadWrite) depends on the type of image connection.

SUBROUTINE GDF_GEMS (MS, IS, BLC, TRC, ADDR, FORM, ERROR)
----------------------------------------------------------------------
GDF Get Memory Slot

MS I Memory Slot number Output
IS I Image Slot number Input
BLC I(4) Bottom Left Corner Input
TRC I(4) Top Right Corner Input
ADDR I Virtual memory address Output
FORM I Type of data Input
ERROR L Logical error flag Output

----------------------------------------------------------------------

GDF GEMS reads a subset of the image connected to slot IS into a memory area (memory slot MS)
located at address ADDR. The image subset is ”incarnated” into the specified data type FORM,
which may be different from the image data type. When BLC(i) and TRC(i) are set to zero, they
default to the current image dimension (i.e BLC(i)=1 and TRC(i)=Dim(i)). After this routine,
virtual memory address ADDR is the start of an array of type FORM containing an incarnation
of the image subset that can be used for further processing.

SUBROUTINE GDF_FRMS (MS,ERROR)
----------------------------------------------------------------------
GDF FRee Memory Slot

----------------------------------------------------------------------

GDF FRMS Frees the memory slot MS. If the connected image was connected with write access,
the image is updated. The memory slot is no longer available after this operation.

SUBROUTINE GDF_UPMS (MS,ERROR)
----------------------------------------------------------------------
GDF UPdate Memory Slot

----------------------------------------------------------------------



3.5. CREATING GILDAS TASKS 47

GDF UPMS Updates the image connected to the memory slot MS. The memory slot is left unmod-
ified. This routine is provided for safety measures.

The I/O (or mapping) are thus only done in the GDF something routines, in a system de-
pendent way. All data format translation (incarnation in a different type, or machine dependent
data types) are done at this level. This allows a transparent operation in an heterogeneous
environment.

3.5 Creating GILDAS Tasks

GILDAS tasks (e.g. for task “taskname”) are composed of 4 different parts :

• The program, taskname.exe.

• A help text file, taskname.hlp

• The initialization file, taskname.init, read by commands RUN and SUBMIT to get from the
user the task input parameters.

• Optionally, a checker file, taskname.check, read by commands RUN and SUBMIT, to check
the input parameters and pass them to the task. It is optional: sic will use a suitable
default derived from the initialisation file when the checker file does not exist.

Tasks and their associated files are searched for in the task#dir: search path (by default
‘‘./;gag tasks:’’).

The structure of the program should always be the same :

• An input parameters definition part. No image creation or access should be made before
all parameters are defined.

• An input and output image mapping part. If possible all necessary images should be defined
in this part.

• One or more subroutines performing the processing. No new image should be created or
accessed in the subroutines. The subroutines should preferably not make any reference to
any common.

• A cleanup part. An error status should be returned to the system in case of error through
a call to SYSEXI.

3.6 A Template Task

The following program is a typical task with two input images and an output one. The easiest
way to create a new task is just to start with this working template and modify what is needed.

Note that this sample task uses integer of kind=4, i.e. 32-bit numbers, to handle some
dimensions, so it will be limited to < 2 Gbyte data size. Changing to kind=8 (in main program
and subroutines...) would remove this limitation.



48 CHAPTER 3. TASK PROGRAMMING MANUAL

3.6.1 Source code

program combine
!----------------------------------------------------------------------
! GILDAS Combine in different ways two input images
! (or data cubes)...
!----------------------------------------------------------------------
use image_def
use gkernel_interfaces
use gbl_format
!
character(len=filename_length) :: 80 namex,namey,namez
character(len=20) :: code
logical error
real ay,az,ty,tz,b,c
type (gildas) :: hx, hy, hz
real, allocatable :: dx(:,:), dy(:,:), dz(:)
integer(kind=4) :: i, j, n, m
integer :: ier
!
call gildas_open
call gildas_char(’Z_NAME$’,namez)
call gildas_real(’Z_FACTOR$’,az,1)
call gildas_real(’Z_MIN$’,tz,1)
call gildas_char(’Y_NAME$’,namey)
call gildas_real(’Y_FACTOR$’,ay,1)
call gildas_real(’Y_MIN$’,ty,1)
call gildas_char(’X_NAME$’,namex)
call gildas_real(’BLANKING$’,b,1)
call gildas_real(’OFFSET$’,c,1)
call gildas_char(’FUNCTION$’,code)
call gildas_close
!
n = len_trim(namez)
if (n.eq.0) goto 100
call gildas_null(hz)
call sic_parsef(namez(1:n),hz%file,’ ’,’.gdf’)
call gdf_read_header(hz,error)
if (error) then

call gagout(’F-COMBINE, Cannot read input file’)
goto 100

endif
!
n = len_trim(namey)
if (n.eq.0) goto 100
call gildas_null(hy)
call sic_parsef(namey(1:n),hy%file,’ ’,’.gdf’)
call gdf_read_header(hy,error)



3.6. A TEMPLATE TASK 49

if (error) then
call gagout(’F-COMBINE, Cannot read input file’)
goto 100

endif
!
if (hz%gil%eval.ge.0.0) hz%gil%eval = &

max(hz%gil%eval,abs(hz%gil%bval*1e-7))
if (hy%gil%eval.ge.0.0) hy%gil%eval = &

max(hy%gil%eval,abs(hy%gil%bval*1e-7))
!
! Check input dimensions
do i=1,gdf_maxdims

if (hy%gil%dim(i).ne.hz%gil%dim(i)) then
n = 1
do j=i,gdf_maxdims

n = n*hz%gil%dim(j)
enddo
if (n.ne.1) then

call gagout(’F-COMBINE, Input images are non coincident’)
goto 100

else
call gagout(’W-COMBINE, Combining a cube with a plane’)

endif
endif

enddo
!
call gdf_copy_header(hy,hx)
n = len_trim(namex)
if (n.eq.0) goto 100
call sic_parsef(namex(1:n),hx%file,’ ’,’.gdf’)
hx%gil%blan_words = 2
hx%gil%bval = b
hx%gil%eval = 0.0
hx%gil%extr_words = 0 ! No extrema computed
!
! Allocate the arrays. Note that the allocated arrays do not conform
! to the shape of the images: DZ is allocated as a 1-D array, DX,DY
! as 2-D arrays, possibly of second dimension 1.
!
n = hz%loca%size
m = hx%loca%size/hz%loca%size
allocate(dx(n,m),dy(n,m),dz(n),stat=ier)
if (ier.ne.0) then

call gagout(’F-COMBINE, Input images are non coincident’)
goto 100

endif
!



50 CHAPTER 3. TASK PROGRAMMING MANUAL

! Read the input data
call gdf_read_data(hz,dz,error)
call gdf_read_data(hy,dy,error)
!
if (code.eq.’ADD’) then

call add002(dz,dy,dx, &
n,m, &
hz%gil%bval,hz%gil%eval,az,tz, &
hy%gil%bval,hy%gil%eval,ay,ty, &
hx%gil%bval,c)

elseif (code.eq.’DIVIDE’) then
call div002(dz,dy,dx, &
n,m, &
hz%gil%bval,hz%gil%eval,az,tz, &
hy%gil%bval,hy%gil%eval,ay,ty, &
hx%gil%bval,c)

elseif (code.eq.’MULTIPLY’) then
call mul002(dz,dy,dx, &
n,m, &
hz%gil%bval,hz%gil%eval,az,tz, &
hy%gil%bval,hy%gil%eval,ay,ty, &
hx%gil%bval,c)

elseif (code.eq.’OPTICAL_DEPTH’) then
call opt002(dz,dy,dx, &
n,m, &
hz%gil%bval,hz%gil%eval,az,tz, &
hy%gil%bval,hy%gil%eval,ay,ty, &
hx%gil%bval,c)

else
call gagout(’Invalid operation code ’//code)
goto 100

endif
!
! Write ouput file
call gdf_write_image(hx,dx,error)
!
stop ’S-COMBINE, Successful completion’
!
100 call sysexi (fatale)

end
!
subroutine add002(z,y,x,n,m,bz,ez,az,tz,by,ey,ay,ty,bx,c)
!---------------------------------------------------------------------
! GDF Internal routine
! Linear combination of input arrays
! X = Ay*Y + Az*Z + C
! Arguments



3.6. A TEMPLATE TASK 51

! Z R*4(*) Input array (N)
! Y R*4(*) Input array (N,M)
! X R*4(*) Output array (N,M)
! N,M I Dimensions of arrays
! BX,BY,BZ R*4 Blanking values
! EY,EZ R*4 Tolerance on blanking
! AZ,AY R*4 Multiplicative factor of array Z, Y
! TZ,TY R*4 Threshold on Z,Y
! C R*4 Additive constant
!---------------------------------------------------------------------
integer :: n !
real :: z(n) !
integer :: m !
real :: y(n,m) !
real :: x(n,m) !
real :: bz !
real :: ez !
real :: az !
real :: tz !
real :: by !
real :: ey !
real :: ay !
real :: ty !
real :: bx !
real :: c !
! Local
integer :: i,k
!
do k=1,m

do i=1,n
if (abs(z(i)-bz).gt.ez .and. abs(y(i,k)-by).gt.ey &
& .and. z(i).gt.tz .and. y(i,k).gt.ty) then

x(i,k) = ay*y(i,k) + az*z(i) + c
else

x(i,k) = bx
endif

enddo
enddo

end

3.6.2 Initialization file

The initialization file is a standard sic procedure containing only commands from the languages
TASK\ or SIC\. TASK\ language must be specified explicitly. The command syntax is always the
following
TASK\Type of parameter "Prompt string" Parameter$[Dimension]

where

• Type of Parameter can be CHARACTER, REAL, INTEGER or LOGICAL



52 CHAPTER 3. TASK PROGRAMMING MANUAL

• "Prompt string" is a text used as a prompt if required

• Parameter$ is the parameter name, the parameter being a standard sic variable, possibly
with one dimension. It is recommended to include a $ as last character to avoid possible
confusion with user declared variables.

!
! Combine.INIT
TASK\FILE "First input map" Z_NAME$
TASK\REAL "Scaling factor" Z_FACTOR$
TASK\REAL "Threshold" Z_MIN$
TASK\FILE "Second input map" Y_NAME$
TASK\REAL "Scaling factor" Y_FACTOR$
TASK\REAL "Threshold" Y_MIN$
TASK\FILE "Output map" X_NAME$
TASK\REAL "New blanking value" BLANKING$
TASK\REAL "Output offset" OFFSET$
TASK\CHARACTER "Function" FUNCTION$
TASK\GO ! Must be last command

The parameter names, types and dimensions must correspond to those declared in the source
code. All parameters must be defined. Ordering may be important (see Checker File).

3.6.3 The HELP file

A standard help file should be prepared for each task. The format follows that of sic help files.
Topics are identified by a “1” in first column, and subtopics by a “2”. The help file must start
with the task name as main topic, and must have a subtopic for each parameter. More subtopics
may exist. The help file must be in the same place as the executable image, and have file type
.hlp. For the example above, combine.hlp contains

1 COMBINE
COMBINE

It makes "combinations" of two input images to produce a third
one. The two input images may have the same dimensions, or the first
one (Z one) may have less dimensions than the second (Y) one. In the
latter case, combinations will occur for all the extra planes of the Y
image. For example you can divide all the plane of an input (Y) 3-D
cube by a 2-D (Z) image, provided each plane of the cube matches the
single image...

Operations are
ADD X = Ay*Y + Az*Z + C
MULTIPLY X = Ay*Y * Az*Z + C
DIVIDE X = Ay*Y / Az*Z + C

provided Y > Ty and Z > Tz, where Ty and Tz and thresholds
set by parameters YMIN$ and ZMIN$.



3.6. A TEMPLATE TASK 53

2 Z_NAME$
This is the name of the input map with the smaller number of
dimensions.
2 Z_FACTOR$
This is a scaling factor for map Z_NAME$.
2 Z_MIN$
This is a threshold on map Z_NAME$.
2 Y_NAME$
This is the name of the input map with the larger number of
dimensions.
2 Y_FACTOR$
This is a scaling factor for map Y_NAME$.
2 Y_MIN$
This is a threshold on map Y_NAME$.
2 X_NAME$
This is the name of the output map.
2 BLANKING$
This is the blanking value chosen for the output map.
2 OFFSET$
This is an offset added to the output map.
2 FUNCTION$
Selected operation. Possible operations are ADD, MULTIPLY, DIVIDE (Y
by Z).

3.6.4 Checker File

The checker file is optional. If it does not exist, sic will create one writing all the task input
variables in the order in which they have been defined.

The checker file is another sic procedure containing only TASK\ and SIC\ commands, which
tests the validity of the input parameters (to avoid submission of tasks with bad parameters), and
writes the parameters. Checking is optional and can be done using sic facilities. All parameters
are known sic variables. Writing is done using command TASK\WRITE, and the ordering must
match the source code. The task is initiated by the TASK\GO command.

!
! Combine.CHECK
SIC\IF (FUNCTION$.EQ."ADD") THEN

SIC\SAY "Computing X_NAME = -
’Y_FACTOR$’*Y_NAME + ’Z_FACTOR$’*Z_NAME + ’OFFSET$’"

SIC\ELSE IF (FUNCTION$.EQ."DIVIDE") THEN
SIC\SAY "Computing X_NAME = -
’Y_FACTOR$’*Y_NAME / ’Z_FACTOR$’*Z_NAME + ’OFFSET$’"

SIC\ELSE IF (FUNCTION$.EQ."MULTIPLY") THEN
SIC\SAY "Computing X_NAME = -
’Y_FACTOR$’*Y_NAME * ’Z_FACTOR$’*Z_NAME + ’OFFSET$’"

SIC\ELSE
SIC\SAY "Invalid operation ’FUNCTION$’"
SIC\RETURN ! Return without a GO command : no submission



54 CHAPTER 3. TASK PROGRAMMING MANUAL

SIC\ENDIF
!
TASK\WRITE Z_NAME$
TASK\WRITE Z_FACTOR$
TASK\WRITE Z_MIN$
TASK\WRITE Y_NAME$
TASK\WRITE Y_FACTOR$
TASK\WRITE Y_MIN$
TASK\WRITE X_NAME$
TASK\WRITE BLANKING$
TASK\WRITE OFFSET$
TASK\WRITE FUNCTION$
TASK\GO ! Effectively RUNs or SUBMITs the task.

3.7 Debugging Tasks

In addition to the predefined directory, GILDAS RUN:, another directory GILDAS LOCAL: is also
searched for tasks by commands VECTOR\RUN and VECTOR\SUBMIT. This area is searched before
GILDAS RUN:. If the required task is found here, the initialisation, checker and help files should
also be present in the same directory. This feature allows to have experimental or user-private
tasks.

Although the tasks are supposed to be non-interactive programs spawned or submitted from
a main program, interactive use is possible for debugging purpose. If activated interactively,
a task will ask one question for each parameter, specifying the parameter type, the parameter
name, and the parameter dimension. No more information will be available. The initialization
and checker file are not needed for this.

Moreover since all algorithms can be standard subroutines due to the use of virtual memory,
the gildas interface can be done easily after debugging the algorithm.



Chapter 4

GTV Programming Manual

4.1 Concept

The GTVIRT is a fast low-level Graphic library, allowing to develop Graphic programs in a
completely device independent way. The GTVIRT library involves the following concepts:

• the Plot Page
The Plot Page is a virtual workspace on which all graphic items will be (virtually) drawn.
The Plot Page units are “virtual centimeters”. Actual drawing on a graphic device is usually
done with an automatic scaling factor to match the Plot Page to the device. For hardcopy
outputs, an exact matching between the Plot Page unit and centimeters is possible.

• Segments
Graphic segments are the smallest separable entities in a drawing. Segments are named,
and can be edited to change their aspects. Although segments are usually associated with
a single, easily identified, part of the drawing (e.g. a curve, or a label, or a bitmap image),
they can contain anything. The segmentation is not defined by the GTVIRT, but left to
the calling program. Segments are named uniquely to help identifying them.

• Coordinate Systems Two coordinate systems are available within the GTVIRT: a Page
coordinate system (whose units are centimeters), and a User coordinate system. Drawing
can be done in any of these systems.

• Directories
Directories are special graphic segments used to group in a logical way ensembles of seg-
ments. A complete directory tree can be specified in a drawing. As for the segments, the
structure of the drawing is defined by the calling program, not by the GTVIRT library.

Each directory has its own User coordinate system. This feature can be used to map several
coordinate systems to different or similar regions of the Plot Page.

• Devices
The GTVIRT is (completely ?) device independent. A drawing can be prepared and
visualized separately. The GTVIRT allows display on a large variety of graphic devices.

• Metafiles
Directories and directory trees of a Plot can be saved on a (binary) metafile, complete
with all graphic segments and user coordinate systems. Metafiles can be imported as Sub-
directories in any Plot.

55



56 CHAPTER 4. GTV PROGRAMMING MANUAL

• Hardcopy
“Hard”copy on paper-like Graphic devices such as pen plotters, laser printers, etc..., are
completely transparent in the GTVIRT. “Soft” hardcopy on files in industry standard
graphic languages such as PostScript or HPGL is possible too.

• Windows
Windows are available on some devices. This includes X-Window terminals, and MS-
Windows screen. Windows can be attached to any directory. Several windows can be
attached to the same directory. A Window displays all the sub-directories depending on
the directory to which it is attached.

• Plotting Depth
Each segment can be understood as an opaque or transparent plot. The order in which
opaque segments are plotted can be controlled by their plotting depth. This feature is
important when plotting bitmaps or drawing colour filled curves.

• 8-bit images
are supported on Windows graphic displays (X-Window or MS-Window or MAC).

The gtvirt normally operates in a buffered mode. All drawings command a written into
an internal metacode, and only transmitted to the plotting device when required by the calling
program. In addition, for applications which require an unbuffered plot, an immediate mode is
available.

4.2 Programming

• Initialisation
The GTVIRT library is initialized by a a call to
SUBROUTINE INIT GTVIRT
followed by a call to SUBROUTINE GTINIT(LX,LY,LUNG,LUNH,NAME,USER ROUTINE
where

– LX,LY are the page dimensions
– LUNG,LUNH are logical unit numbers for graphic output and hardcopies, to be supplied

by the caller
– NAME is a character string giving the name of the top directory of the drawings. NAME

should start with a < sign.
– USER ROUTINE is a user-supplied subroutine called when moving from a sub-directory

to the other. It must provide to the GTVIRT information about coordinate systems.
The only suitable routine is available in the greg program, and is named GREG USER

• The GTVIEW subroutine

The GTVIEW subroutine is one of the main control routine in the library. It is used to send
drawing commands from the internal metacode to the graphic device, but also to performs
other actions on the metacode.

SUBROUTINE GTVIRT(Mode)

where Action is a character string which can be



4.3. BASIC SEQUENCE 57

– ’Append’
Plot all metacode starting from last drawn vector

– ’Rewind’
Clear the screen, and plot the whole metacode from first vector

– ’Update’
Update the screen (all windows) if needed

– ’Limits’
Recompute the plot limits (Bounding Box)

– ’Purge’
Delete images associated to all windows

– ’Delete’
Delete images associated to the current window

– ’Zap’
Delete cache-bitmap associated to images

– ’Sleep’
Set screen update off

– ’Wake’
Set screen update on

4.3 Basic Sequence

greg and the gtvirt are intimately related, and it is not recommended to use the gtvirt
without gregȦccordingly, the programming example given below also uses some (primitive)
greg subroutines. The basic drawing sequence is

CALL GR_SEGM (Segment_Name,Error) ! 1
CALL GTPOLYL (N,Xarray,Yarray) ! 2
CALL ... ! 3
CALL GTVIEW(’Append’) ! 4

1. Open a new graphic segment. This routines is an “intelligent” routine checking wether
pen attributes have been changed, and calling both GTSEGM (the basic segment creation
routine) and GTEDIT (which defines the segment attributes like pen colour, dashed pattern,
thickness).

2. Use any drawing routine you wish, e.g. an polyline. The drawing commands go to the
internal metacode only at that time.

3. ...

4. Update the graphic screen with all the new drawing commands which have been put in the
metacode since last call to GTVIEW(’Append’)

Further buffering between graphic segments can be obtained by enclosing a set of complete se-
quences like the above one between a call to GTVIEW(’Sleep’) and GTVIEW(’Wake up’). Drawing
to the screen will then only happen when the call to GTVIEW(’Wake up’) is made. For compat-
ibility with other subroutines which may also perform their own Sleep / Wake up control, it is
recommended to use the logical function GTSTAT instead, e.g.



58 CHAPTER 4. GTV PROGRAMMING MANUAL

SLEEP = GTSTAT (’Sleep’)

... calls to GTVIRT ...

IF (.NOT.SLEEP) CALL GTVIEW(’Wake_up’)

4.4 Plot Structuration and multi-window applications

For some complex applications, it is useful to be able to create several graphic windows and
display different plots in each of them. Such a control over the plot structure is preferably done
using the GTVL command language, by appropriate calls to subroutine GR EXECL.

SUBROUTINE GR EXECL(Command)
execute a command from the GTVL command language.

The most relevant commands to structure a plot are

• CREATE DIRECTORY <NAME to create new top directory called <NAME

• CHANGE DIRECTORY <NAME to move to this (top) directory

• CREATE WINDOW to create a new window associated to the current directory

• CHANGE POSITION Code to move the current window a given position in the screen.

• CLEAR WINDOW to clear a window

• CLEAR TREE to erase the tree linked to the current directory (from the current top directory).

• CREATE DIRECTORY NAME to create new sub directory

• CHANGE DIRECTORY NAME to move to this sub directory

Refer to the greg manuals for detailed help on these commands.
In addition, subroutine GTEXIST is useful to check whether a given directory already exists.

4.5 Subroutines

• gtchar
Draws a character string.

• gtclal
Clear alphanumeric screen. On Windows applications, transfer focus to the (current)
graphic window, and raise in on top of others to display it.

• gtclear
Erase the whole plot, all directory structures, destroy all associated windows, etc... An
empty top directory is then re-created

• gtclos
Close the current graphic device

• gtclpl
Raise alphanumeric window, and returns focus to it.

• gtcurs
Call the cursor



4.5. SUBROUTINES 59

• gtdls
Delete the last graphic segment

• gtdraw
Draw a vector from current pen position to the specified point.

• gtedit
Edit the current segment properties.

• gterflag, gterrgto, gterrtst
Control error status of the library

• gtexist
Controls the existence of a named sub-directory.

• gthard
Create a hardcopy

• gtinit
Initialize the GTVIRT drawing space and the GTVL language

• gtopen
Open a graphic device

• gtpolyl
Draw a set of lines.

• gtreloc
Move current pen position to specified coordinates.

• gtsegm
Open a new segment

• gtview
Activate the drawing

• gtwhere
Returns current pen position

• gtg charlen
Computes character string length

• gtg charsiz
Returns character size

• gtg curs
Returns cursor existence

• gtg screen
Returns clipping parameters

• gtg open
Returns device parameters



60 CHAPTER 4. GTV PROGRAMMING MANUAL

• gtstat
Change GTVIRT mode (Sleep or Wake up), and returns previous mode.

• gtv newimage
Create a new image slot

• gtv image
Draw a bitmap to an image slot

• gtv numimage
Get a free image slot

• gtv majimage
Define parameters of an image slot

• gtv fillpoly
Fill a closed polygon.

• init gtvirt
Initialize the GTVIRT library

• exit clear
Quick exit, to be used at program completion.

• run gtvl
Dispatch the GTVL commands to appropriate subroutines

• exec gtvl
Execute a GTVL language command or command procedure

Immediate routines are used to produce immediate actions. They use the immediate pen.
These subroutines are

• gti beep: beep

• gti clear: clear the current window

• gti draw: draw line to current

• gti out: flush the normal drawing buffer.

• gti pen: select the immediate pen

• gti polyl: draw a polyline

• gti reloc: relocate the immediate pen

• gti where: returns immediate pen position



Index

GDF CLIS, 44
GDF CRIS, 45
GDF EXIS, 45
GDF FRIS, 44
GDF FRMS, 46
GDF GEIS, 44
GDF GEMS, 46
GDF REIS, 45
GDF STIS, 44
GDF UPMS, 46
GDF WRIS, 45

ROUTINES
EXEC COMMAND, 9
EXEC PROGRAM, 9
FREE VM, 19
GAGOUT, 9
LENC, 19
SIC AMBIGS, 16
SIC ANALYSE, 17
SIC BEGIN, 4, 10, 14
SIC CH, 8, 15
SIC CTRLC, 15
SIC DEF CHAR, 10
SIC DEF CHARN, 10
SIC DEF DBLE, 10
SIC DEF FUNC, 13
SIC DEF INTE, 10
SIC DEF LOGI, 10
SIC DEF LOGIN, 10
SIC DEF REAL, 10
SIC DEF STRN, 10
SIC DEFSTRUCTURE, 10
SIC DELSYMBOL, 19
SIC DELVARIABLE, 13
SIC DESCRIPTOR, 11
SIC FORMAT, 18
SIC GET CHAR, 11
SIC GET DBLE, 11
SIC GET INTE, 11

SIC GET LOGI, 11
SIC GET REAL, 11
SIC GETLUN, 9
SIC GETSYMBOL, 19
SIC GETVM, 19
SIC I4, 8, 15
SIC INCARNATE, 12
SIC INSERT, 14
SIC INTER STATE, 15
SIC KE, 8, 15
SIC L4, 8, 15
SIC LANG, 15
SIC LEN, 17
SIC LET CHAR, 11
SIC LET DBLE, 11
SIC LET INTE, 11
SIC LET LOGI, 11
SIC LET REAL, 11
SIC LIRE, 14, 15
SIC LOG, 14
SIC LOGICAL, 12
SIC LOWER, 18
SIC MATERIALIZE, 12
SIC MATH, 12
SIC NARG, 16
SIC NEXT, 17
SIC OPT, 19
SIC PARSEF, 18
SIC PRESENT, 16
SIC R4, 8, 15
SIC R8, 8, 15
SIC RUN, 19
SIC SETSYMBOL, 19
SIC SEXA, 12
SIC START, 17
SIC UPPER, 18
SIC VOLATILE, 12
SIC WPR, 18
SIC WPRN, 18

61


	Introduction
	SIC Programming Manual - Partially updated on Oct.2008
	Introduction
	Initializing SIC: Languages and Packages
	Packages
	Language Definition
	The command dispatching and handling

	The Help File
	Retrieving Arguments
	The messaging facility
	Writing on files: Fortran logical unit number
	Linking on Linux: TO BE UPDATED

	The Library Version
	Library Only mode

	Using Variables
	Definition
	Assignment and Examination
	Mathematical Formula Handling
	Deleting Variables

	Using Functions
	SIC Callable Routines
	Monitor interface routines
	SIC Arguments Retrieving Routines
	Command Line Interpretor Subroutines
	All Purpose General Subroutines
	Symbol Manipulation Routines

	Obsolescent Features
	Function
	Routines for Library usage (Obsolescent, for record only)


	GreG Programming Manual
	Interaction with FORTRAN programs
	Basic Routines
	Linking
	UNIX systems

	Running
	Example
	Array Transfer
	GR4_GIVE - GR8_GIVE
	GR4_GET - GR8_GET
	GR4_RGIVE - GR8_RGIVE
	GR4_LEVELS - GR8_LEVELS

	Immediate Routines
	GR_SEGM
	GR_OUT
	DRAW - RELOCATE
	GDRAW - GRELOCATE
	GR4_PHYS_USER - GR8_PHYS_USER
	GR4_USER_PHYS - GR8_USER_PHYS
	GR4_CONNECT - GR8_CONNECT
	GR4_HISTO - GR8_HISTO
	GR4_MARKER - GR8_MARKER
	GR4_CURVE - GR8_CURVE
	GR4_EXTREMA - GR8_EXTREMA
	GR8_BLANKING
	GR8_SYSTEM - GR8_PROJEC
	GR4_RVAL
	GR_WHERE
	GR8_TRI
	GR8_SORT
	GR_CLIP

	The cursor routine
	greg High-Level Subroutines

	Task Programming Manual
	General Outline and Data Structure of Images
	Fortran-90 access to images
	GIO API
	Obsolete Fortran-77 access routines
	Image Slot Handling
	Image Connection
	Memory Connection

	Creating GILDAS Tasks
	A Template Task
	Source code
	Initialization file
	The HELP file
	Checker File

	Debugging Tasks

	GTV Programming Manual
	Concept
	Programming
	Basic Sequence
	Plot Structuration and multi-window applications
	Subroutines


