FORTRAN Generation
(/./ftp/cats/J/MNRAS/472/2085)

Conversion of standardized ReadMe file for file /./ftp/cats/J/MNRAS/472/2085 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Mar-28
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/MNRAS/472/2085   ALHAMBRA fields type-I AGN with ELDAR (Chaves-Montero+, 2017)
*================================================================================
*ELDAR, a new method to identify AGN in multi-filter surveys:
*the ALHAMBRA test-case.
*    Chaves-Montero J., Bonoli S., Salvato M., Greisel N., Diaz-Garcia L.A.,
*    Lopez-Sanjuan C., Viironen K., Fernandez-Soto A., Povic M., Ascaso B.,
*    Arnalte-Mur P., Masegosa J., Matute I., Marquez I., Cenarro A. J.,
*    Abramo L.R., Ederoclite A., Alfaro E.J.
*    <Mon. Not. R. Astron. Soc. 472, 2085 (2017)>
*    =2017MNRAS.472.2085C        (SIMBAD/NED BibCode)
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'alh2l.dat'	! ALH2L catalogue

      integer*4 nr__
      parameter (nr__=585)	! Number of records
      character*530 ar__   	! Full-size record

C  J2000 position composed of: RAdeg DEdeg
      character*8   Name       (nr__) ! Identification number (ALHXLYYY) (1)
      real*8        RAdeg      (nr__) ! (deg) Right ascension (J2000)
      real*8        DEdeg      (nr__) ! (deg) Declination (J2000)
      real*4        z          (nr__) ! Photometric redshift
      integer*4     Mask       (nr__) ! [0,1] Mask (2)
      integer*4     Temp       (nr__) ! [1/12] Best-fit extragalactic template (3)
      real*4        ExtB       (nr__) ! Best-fit colour excess
      real*4        F814W      (nr__) ! (mag) F814W magnitude (4)
      real*4        e_F814W    (nr__) ! (mag) F814W uncertainty (4)
      real*4        Stell      (nr__) ! [0,1] Stellarity (1 = point-like sources, 
*                                      0 = extended sources)
      real*8        F365W      (nr__) ! (mag) ?=-99.000 F365W magnitude
      real*8        e_F365W    (nr__) ! (mag) ?=-99.000 F365W uncertainty
      real*8        F396W      (nr__) ! (mag) ?=-99.000 F396W magnitude
      real*8        e_F396W    (nr__) ! (mag) ?=-99.000 F396W uncertainty
      real*8        F427W      (nr__) ! (mag) ?=-99.000 F427W magnitude
      real*8        e_F427W    (nr__) ! (mag) ?=-99.000 F427W uncertainty
      real*8        F458W      (nr__) ! (mag) ?=-99.000 F458W magnitude
      real*8        e_F458W    (nr__) ! (mag) ?=-99.000 F458W uncertainty
      real*8        F489W      (nr__) ! (mag) ?=-99.000 F489W magnitude
      real*8        e_F489W    (nr__) ! (mag) ?=-99.000 F489W uncertainty
      real*8        F520W      (nr__) ! (mag) ?=-99.000 F520W magnitude
      real*8        e_F520W    (nr__) ! (mag) ?=-99.000 F520W uncertainty
      real*8        F551W      (nr__) ! (mag) ?=-99.000 F551W magnitude
      real*8        e_F551W    (nr__) ! (mag) ?=-99.000 F551W uncertainty
      real*8        F582W      (nr__) ! (mag) ?=-99.000 F582W magnitude
      real*8        e_F582W    (nr__) ! (mag) ?=-99.000 F582W uncertainty
      real*8        F613W      (nr__) ! (mag) ?=-99.000 F613W magnitude
      real*8        e_F613W    (nr__) ! (mag) ?=-99.000 F613W uncertainty
      real*8        F644W      (nr__) ! (mag) ?=-99.000 F644W magnitude
      real*8        e_F644W    (nr__) ! (mag) ?=-99.000 F644W uncertainty
      real*8        F675W      (nr__) ! (mag) ?=-99.000 F675W magnitude
      real*8        e_F675W    (nr__) ! (mag) ?=-99.000 F675W uncertainty
      real*8        F706W      (nr__) ! (mag) ?=-99.000 F706W magnitude
      real*8        e_F706W    (nr__) ! (mag) ?=-99.000 F706W uncertainty
      real*8        F737W      (nr__) ! (mag) ?=-99.000 F737W magnitude
      real*8        e_F737W    (nr__) ! (mag) ?=-99.000 F737W uncertainty
      real*8        F768W      (nr__) ! (mag) ?=-99.000 F768W magnitude
      real*8        e_F768W    (nr__) ! (mag) ?=-99.000 F768W uncertainty
      real*8        F799W      (nr__) ! (mag) ?=-99.000 F799W magnitude
      real*8        e_F799W    (nr__) ! (mag) ?=-99.000 F799W uncertainty
      real*8        F830W      (nr__) ! (mag) ?=-99.000 F830W magnitude
      real*8        e_F830W    (nr__) ! (mag) ?=-99.000 F830W uncertainty
      real*8        F861W      (nr__) ! (mag) ?=-99.000 F861W magnitude
      real*8        e_F861W    (nr__) ! (mag) ?=-99.000 F861W uncertainty
      real*8        F892W      (nr__) ! (mag) ?=-99.000 F892W magnitude
      real*8        e_F892W    (nr__) ! (mag) ?=-99.000 F892W uncertainty
      real*8        F923W      (nr__) ! (mag) ?=-99.000 F923W magnitude
      real*8        e_F923W    (nr__) ! (mag) ?=-99.000 F923W uncertainty
      real*8        F954W      (nr__) ! (mag) ?=-99.000 F954W magnitude
      real*8        e_F954W    (nr__) ! (mag) ?=-99.000 F954W uncertainty
      real*8        FJ         (nr__) ! (mag) ?=-99.000 NIR-J magnitude
      real*8        e_FJ       (nr__) ! (mag) ?=-99.000 NIR-J uncertainty
      real*8        FH         (nr__) ! (mag) ?=-99.000 NIR-H magnitude
      real*8        e_FH       (nr__) ! (mag) ?=-99.000 NIR-H uncertainty
      real*8        FKs        (nr__) ! (mag) ?=-99.000 NIR-Ks magnitude
      real*8        e_FKs      (nr__) ! (mag) ?=-99.000 NIR-Ks uncertainty
      integer*4     line1      (nr__) ! Band where the OVI+Lyman beta
*                                      complex is detected (5)
      real*4        log_SNRl1  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      OVI+Lyman beta complex is detected
      real*4        log_Slin1  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      OVI+Lyman beta complex is detected
      integer*4     line2      (nr__) ! Band where the Lyman alpha line
*                                      is detected (5)
      real*4        log_SNRl2  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      Lyman alpha line is detected
      real*4        log_Slin2  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      Lyman alpha line is detected
      integer*4     line3      (nr__) ! Band where the SiIV+OIV
*                                      complex is detected (5)
      real*4        log_SNRl3  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      SiIV+OIV complex is detected
      real*4        log_Slin3  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      SiIV+OIV complex is detected
      integer*4     line4      (nr__) ! Band where the CIV line is
*                                      detected (5)
      real*4        log_SNRl4  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      CIV line is detected
      real*4        log_Slin4  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      CIV line complex is detected
      integer*4     line5      (nr__) ! Band where the CIII] line is
*                                      detected (5)
      real*4        log_SNRl5  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      CIII] line is detected
      real*4        log_Slin5  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      CIII] line is detected
      integer*4     line6      (nr__) ! Band where the MgII line is
*                                      detected (5)
      real*4        log_SNRl6  (nr__) ! ([-]) log_10(SNR) in the band where the
*                                      MgII line is detected
      real*4        log_Slin6  (nr__) ! ([-]) log_10(Slin) in the band where the
*                                      MgII line is detected (5)
*Note (1): The format is ALHXLYYY, where the value of X is 2 and 3 for the
*  ALH2L and ALH3L catalogues, respectively, and YYY is the number of the object.
*  The IDs are ranked according to zphot.
*Note (2): ALHAMBRA angular mask of Arnalte-Mur et al. (2014MNRAS.441.1783A).
*  It describes the sky area which has been reliably observed as follows:
*  1 = inside the mask
*  0 = outside the mask
*Note (3): Extragalactic templates that we introduce in LePHARE as follows:
* ---------------------------------------------------------------
* Index     Template           Class                 References
* ---------------------------------------------------------------
*   1    = I22491_70_TQSO1_30     Quasar 30% + Gal. 70% [1]
*   2    = I22491_60_TQSO1_40     Quasar 40% + Gal. 60% [1]
*   3    = I22491_50_TQSO1_50     Quasar 50% + Gal. 50% [1]
*   4    = I22491_40_TQSO1_60     Quasar 60% + Gal. 40% [1]
*   5    = pl_I22491_30_TQSO1_70  Quasar 70% + Gal. 30% [1]
*   6    = pl_I22491_20_TQSO1_80  Quasar 80% + Gal. 20% [1]
*   7    = pl_QSO_DR2_029_t0      Quasar low lum.       [1]
*   8    = pl_QSOH                Quasar high lum.      [1]
*   9    = pl_TQSO1               Quasar high IR lum.   [1]
*  10    = qso-0.2_84             Quasar synthetic      [2]
*  11    = QSO_VVDS               Quasar                [3]
*  12    = QSO_SDSS               Quasar                [4]
* ---------------------------------------------------------------
*
*  References.
*  [1] Salvato et al. (2009ApJ...690.1250S)
*  [2] LePHARE distribution
*  [3] VVDS composite (Gavignaud et al., 2006, Cat. J/A+A/457/79)
*  [4] SDSS composite (Vanden Berk et al., 2001AJ....122..549V)
*
*  Templates starting with pl are extended into the UV using a power law
*  (see Salvato et al., 2009ApJ...690.1250S).
*Note (4): The F814W ALHAMBRA band is a synthetic band that corresponds to the
*  HST/ACD F814W band. It was employed to create the ALHAMBRA detection
*  images. The signal-to-noise ratio in the detection band is 1/e_F814W.
*Note (5): ALHAMBRA band where AGN emission lines fall.
*  It is 99 for no detections and 0 for lines outside the ALHAMBRA wavelength
*  range. For detected lines we include the SNR in the line that they fall and
*  the significance with which the line is detected, Slin.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'alh3l.dat'	! ALH3L catalogue

      integer*4 nr__1
      parameter (nr__1=494)	! Number of records
      character*530 ar__1  	! Full-size record

C  J2000 position composed of: RAdeg DEdeg
      character*8   Name_1     (nr__1) ! Identification number (ALHXLYYY) (1)
      real*8        RAdeg_1    (nr__1) ! (deg) Right ascension (J2000)
      real*8        DEdeg_1    (nr__1) ! (deg) Declination (J2000)
      real*4        z_1        (nr__1) ! Photometric redshift
      integer*4     Mask_1     (nr__1) ! [0,1] Mask (2)
      integer*4     Temp_1     (nr__1) ! [1/12] Best-fit extragalactic template (3)
      real*4        ExtB_1     (nr__1) ! Best-fit colour excess
      real*4        F814W_1    (nr__1) ! (mag) F814W magnitude (4)
      real*4        e_F814W_1  (nr__1) ! (mag) F814W uncertainty (4)
      real*4        Stell_1    (nr__1) ! [0,1] Stellarity (1 = point-like sources, 
*                                      0 = extended sources)
      real*8        F365W_1    (nr__1) ! (mag) ?=-99.000 F365W magnitude
      real*8        e_F365W_1  (nr__1) ! (mag) ?=-99.000 F365W uncertainty
      real*8        F396W_1    (nr__1) ! (mag) ?=-99.000 F396W magnitude
      real*8        e_F396W_1  (nr__1) ! (mag) ?=-99.000 F396W uncertainty
      real*8        F427W_1    (nr__1) ! (mag) ?=-99.000 F427W magnitude
      real*8        e_F427W_1  (nr__1) ! (mag) ?=-99.000 F427W uncertainty
      real*8        F458W_1    (nr__1) ! (mag) ?=-99.000 F458W magnitude
      real*8        e_F458W_1  (nr__1) ! (mag) ?=-99.000 F458W uncertainty
      real*8        F489W_1    (nr__1) ! (mag) ?=-99.000 F489W magnitude
      real*8        e_F489W_1  (nr__1) ! (mag) ?=-99.000 F489W uncertainty
      real*8        F520W_1    (nr__1) ! (mag) ?=-99.000 F520W magnitude
      real*8        e_F520W_1  (nr__1) ! (mag) ?=-99.000 F520W uncertainty
      real*8        F551W_1    (nr__1) ! (mag) ?=-99.000 F551W magnitude
      real*8        e_F551W_1  (nr__1) ! (mag) ?=-99.000 F551W uncertainty
      real*8        F582W_1    (nr__1) ! (mag) ?=-99.000 F582W magnitude
      real*8        e_F582W_1  (nr__1) ! (mag) ?=-99.000 F582W uncertainty
      real*8        F613W_1    (nr__1) ! (mag) ?=-99.000 F613W magnitude
      real*8        e_F613W_1  (nr__1) ! (mag) ?=-99.000 F613W uncertainty
      real*8        F644W_1    (nr__1) ! (mag) ?=-99.000 F644W magnitude
      real*8        e_F644W_1  (nr__1) ! (mag) ?=-99.000 F644W uncertainty
      real*8        F675W_1    (nr__1) ! (mag) ?=-99.000 F675W magnitude
      real*8        e_F675W_1  (nr__1) ! (mag) ?=-99.000 F675W uncertainty
      real*8        F706W_1    (nr__1) ! (mag) ?=-99.000 F706W magnitude
      real*8        e_F706W_1  (nr__1) ! (mag) ?=-99.000 F706W uncertainty
      real*8        F737W_1    (nr__1) ! (mag) ?=-99.000 F737W magnitude
      real*8        e_F737W_1  (nr__1) ! (mag) ?=-99.000 F737W uncertainty
      real*8        F768W_1    (nr__1) ! (mag) ?=-99.000 F768W magnitude
      real*8        e_F768W_1  (nr__1) ! (mag) ?=-99.000 F768W uncertainty
      real*8        F799W_1    (nr__1) ! (mag) ?=-99.000 F799W magnitude
      real*8        e_F799W_1  (nr__1) ! (mag) ?=-99.000 F799W uncertainty
      real*8        F830W_1    (nr__1) ! (mag) ?=-99.000 F830W magnitude
      real*8        e_F830W_1  (nr__1) ! (mag) ?=-99.000 F830W uncertainty
      real*8        F861W_1    (nr__1) ! (mag) ?=-99.000 F861W magnitude
      real*8        e_F861W_1  (nr__1) ! (mag) ?=-99.000 F861W uncertainty
      real*8        F892W_1    (nr__1) ! (mag) ?=-99.000 F892W magnitude
      real*8        e_F892W_1  (nr__1) ! (mag) ?=-99.000 F892W uncertainty
      real*8        F923W_1    (nr__1) ! (mag) ?=-99.000 F923W magnitude
      real*8        e_F923W_1  (nr__1) ! (mag) ?=-99.000 F923W uncertainty
      real*8        F954W_1    (nr__1) ! (mag) ?=-99.000 F954W magnitude
      real*8        e_F954W_1  (nr__1) ! (mag) ?=-99.000 F954W uncertainty
      real*8        FJ_1       (nr__1) ! (mag) ?=-99.000 NIR-J magnitude
      real*8        e_FJ_1     (nr__1) ! (mag) ?=-99.000 NIR-J uncertainty
      real*8        FH_1       (nr__1) ! (mag) ?=-99.000 NIR-H magnitude
      real*8        e_FH_1     (nr__1) ! (mag) ?=-99.000 NIR-H uncertainty
      real*8        FKs_1      (nr__1) ! (mag) ?=-99.000 NIR-Ks magnitude
      real*8        e_FKs_1    (nr__1) ! (mag) ?=-99.000 NIR-Ks uncertainty
      integer*4     line1_1    (nr__1) ! Band where the OVI+Lyman beta
*                                      complex is detected (5)
      real*4        log_SNRl1_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      OVI+Lyman beta complex is detected
      real*4        log_Slin1_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      OVI+Lyman beta complex is detected
      integer*4     line2_1    (nr__1) ! Band where the Lyman alpha line
*                                      is detected (5)
      real*4        log_SNRl2_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      Lyman alpha line is detected
      real*4        log_Slin2_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      Lyman alpha line is detected
      integer*4     line3_1    (nr__1) ! Band where the SiIV+OIV
*                                      complex is detected (5)
      real*4        log_SNRl3_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      SiIV+OIV complex is detected
      real*4        log_Slin3_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      SiIV+OIV complex is detected
      integer*4     line4_1    (nr__1) ! Band where the CIV line is
*                                      detected (5)
      real*4        log_SNRl4_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      CIV line is detected
      real*4        log_Slin4_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      CIV line complex is detected
      integer*4     line5_1    (nr__1) ! Band where the CIII] line is
*                                      detected (5)
      real*4        log_SNRl5_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      CIII] line is detected
      real*4        log_Slin5_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      CIII] line is detected
      integer*4     line6_1    (nr__1) ! Band where the MgII line is
*                                      detected (5)
      real*4        log_SNRl6_1(nr__1) ! ([-]) log_10(SNR) in the band where the
*                                      MgII line is detected
      real*4        log_Slin6_1(nr__1) ! ([-]) log_10(Slin) in the band where the
*                                      MgII line is detected (5)
*Note (1): The format is ALHXLYYY, where the value of X is 2 and 3 for the
*  ALH2L and ALH3L catalogues, respectively, and YYY is the number of the object.
*  The IDs are ranked according to zphot.
*Note (2): ALHAMBRA angular mask of Arnalte-Mur et al. (2014MNRAS.441.1783A).
*  It describes the sky area which has been reliably observed as follows:
*  1 = inside the mask
*  0 = outside the mask
*Note (3): Extragalactic templates that we introduce in LePHARE as follows:
* ---------------------------------------------------------------
* Index     Template           Class                 References
* ---------------------------------------------------------------
*   1    = I22491_70_TQSO1_30     Quasar 30% + Gal. 70% [1]
*   2    = I22491_60_TQSO1_40     Quasar 40% + Gal. 60% [1]
*   3    = I22491_50_TQSO1_50     Quasar 50% + Gal. 50% [1]
*   4    = I22491_40_TQSO1_60     Quasar 60% + Gal. 40% [1]
*   5    = pl_I22491_30_TQSO1_70  Quasar 70% + Gal. 30% [1]
*   6    = pl_I22491_20_TQSO1_80  Quasar 80% + Gal. 20% [1]
*   7    = pl_QSO_DR2_029_t0      Quasar low lum.       [1]
*   8    = pl_QSOH                Quasar high lum.      [1]
*   9    = pl_TQSO1               Quasar high IR lum.   [1]
*  10    = qso-0.2_84             Quasar synthetic      [2]
*  11    = QSO_VVDS               Quasar                [3]
*  12    = QSO_SDSS               Quasar                [4]
* ---------------------------------------------------------------
*
*  References.
*  [1] Salvato et al. (2009ApJ...690.1250S)
*  [2] LePHARE distribution
*  [3] VVDS composite (Gavignaud et al., 2006, Cat. J/A+A/457/79)
*  [4] SDSS composite (Vanden Berk et al., 2001AJ....122..549V)
*
*  Templates starting with pl are extended into the UV using a power law
*  (see Salvato et al., 2009ApJ...690.1250S).
*Note (4): The F814W ALHAMBRA band is a synthetic band that corresponds to the
*  HST/ACD F814W band. It was employed to create the ALHAMBRA detection
*  images. The signal-to-noise ratio in the detection band is 1/e_F814W.
*Note (5): ALHAMBRA band where AGN emission lines fall.
*  It is 99 for no detections and 0 for lines outside the ALHAMBRA wavelength
*  range. For detected lines we include the SNR in the line that they fall and
*  the significance with which the line is detected, Slin.

C=============================================================================

C  Loading file 'alh2l.dat'	! ALH2L catalogue

C  Format for file interpretation

    1 format(
     +  A8,1X,F8.4,1X,F8.4,1X,F5.3,1X,I1,1X,I2,1X,F4.2,1X,F6.3,1X,
     +  F5.3,1X,F4.2,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,
     +  F6.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,
     +  F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,F6.3)

C  Effective file loading

      open(unit=1,status='old',file=
     +'alh2l.dat')
      write(6,*) '....Loading file: alh2l.dat'
      do i__=1,585
        read(1,'(A530)')ar__
        read(ar__,1)
     +  Name(i__),RAdeg(i__),DEdeg(i__),z(i__),Mask(i__),Temp(i__),
     +  ExtB(i__),F814W(i__),e_F814W(i__),Stell(i__),F365W(i__),
     +  e_F365W(i__),F396W(i__),e_F396W(i__),F427W(i__),e_F427W(i__),
     +  F458W(i__),e_F458W(i__),F489W(i__),e_F489W(i__),F520W(i__),
     +  e_F520W(i__),F551W(i__),e_F551W(i__),F582W(i__),e_F582W(i__),
     +  F613W(i__),e_F613W(i__),F644W(i__),e_F644W(i__),F675W(i__),
     +  e_F675W(i__),F706W(i__),e_F706W(i__),F737W(i__),e_F737W(i__),
     +  F768W(i__),e_F768W(i__),F799W(i__),e_F799W(i__),F830W(i__),
     +  e_F830W(i__),F861W(i__),e_F861W(i__),F892W(i__),e_F892W(i__),
     +  F923W(i__),e_F923W(i__),F954W(i__),e_F954W(i__),FJ(i__),
     +  e_FJ(i__),FH(i__),e_FH(i__),FKs(i__),e_FKs(i__),line1(i__),
     +  log_SNRl1(i__),log_Slin1(i__),line2(i__),log_SNRl2(i__),
     +  log_Slin2(i__),line3(i__),log_SNRl3(i__),log_Slin3(i__),
     +  line4(i__),log_SNRl4(i__),log_Slin4(i__),line5(i__),
     +  log_SNRl5(i__),log_Slin5(i__),line6(i__),log_SNRl6(i__),
     +  log_Slin6(i__)
c    ..............Just test output...........
        write(6,1)
     +  Name(i__),RAdeg(i__),DEdeg(i__),z(i__),Mask(i__),Temp(i__),
     +  ExtB(i__),F814W(i__),e_F814W(i__),Stell(i__),F365W(i__),
     +  e_F365W(i__),F396W(i__),e_F396W(i__),F427W(i__),e_F427W(i__),
     +  F458W(i__),e_F458W(i__),F489W(i__),e_F489W(i__),F520W(i__),
     +  e_F520W(i__),F551W(i__),e_F551W(i__),F582W(i__),e_F582W(i__),
     +  F613W(i__),e_F613W(i__),F644W(i__),e_F644W(i__),F675W(i__),
     +  e_F675W(i__),F706W(i__),e_F706W(i__),F737W(i__),e_F737W(i__),
     +  F768W(i__),e_F768W(i__),F799W(i__),e_F799W(i__),F830W(i__),
     +  e_F830W(i__),F861W(i__),e_F861W(i__),F892W(i__),e_F892W(i__),
     +  F923W(i__),e_F923W(i__),F954W(i__),e_F954W(i__),FJ(i__),
     +  e_FJ(i__),FH(i__),e_FH(i__),FKs(i__),e_FKs(i__),line1(i__),
     +  log_SNRl1(i__),log_Slin1(i__),line2(i__),log_SNRl2(i__),
     +  log_Slin2(i__),line3(i__),log_SNRl3(i__),log_Slin3(i__),
     +  line4(i__),log_SNRl4(i__),log_Slin4(i__),line5(i__),
     +  log_SNRl5(i__),log_Slin5(i__),line6(i__),log_SNRl6(i__),
     +  log_Slin6(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'alh3l.dat'	! ALH3L catalogue

C  Format for file interpretation

    2 format(
     +  A8,1X,F8.4,1X,F8.4,1X,F5.3,1X,I1,1X,I2,1X,F4.2,1X,F6.3,1X,
     +  F5.3,1X,F4.2,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,
     +  1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,F7.3,1X,
     +  F7.3,1X,F7.3,1X,F7.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,
     +  F6.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,F6.3,1X,I2,1X,
     +  F6.3,1X,F6.3,1X,I2,1X,F6.3,1X,F6.3)

C  Effective file loading

      open(unit=1,status='old',file=
     +'alh3l.dat')
      write(6,*) '....Loading file: alh3l.dat'
      do i__=1,494
        read(1,'(A530)')ar__1
        read(ar__1,2)
     +  Name_1(i__),RAdeg_1(i__),DEdeg_1(i__),z_1(i__),Mask_1(i__),
     +  Temp_1(i__),ExtB_1(i__),F814W_1(i__),e_F814W_1(i__),
     +  Stell_1(i__),F365W_1(i__),e_F365W_1(i__),F396W_1(i__),
     +  e_F396W_1(i__),F427W_1(i__),e_F427W_1(i__),F458W_1(i__),
     +  e_F458W_1(i__),F489W_1(i__),e_F489W_1(i__),F520W_1(i__),
     +  e_F520W_1(i__),F551W_1(i__),e_F551W_1(i__),F582W_1(i__),
     +  e_F582W_1(i__),F613W_1(i__),e_F613W_1(i__),F644W_1(i__),
     +  e_F644W_1(i__),F675W_1(i__),e_F675W_1(i__),F706W_1(i__),
     +  e_F706W_1(i__),F737W_1(i__),e_F737W_1(i__),F768W_1(i__),
     +  e_F768W_1(i__),F799W_1(i__),e_F799W_1(i__),F830W_1(i__),
     +  e_F830W_1(i__),F861W_1(i__),e_F861W_1(i__),F892W_1(i__),
     +  e_F892W_1(i__),F923W_1(i__),e_F923W_1(i__),F954W_1(i__),
     +  e_F954W_1(i__),FJ_1(i__),e_FJ_1(i__),FH_1(i__),e_FH_1(i__),
     +  FKs_1(i__),e_FKs_1(i__),line1_1(i__),log_SNRl1_1(i__),
     +  log_Slin1_1(i__),line2_1(i__),log_SNRl2_1(i__),
     +  log_Slin2_1(i__),line3_1(i__),log_SNRl3_1(i__),
     +  log_Slin3_1(i__),line4_1(i__),log_SNRl4_1(i__),
     +  log_Slin4_1(i__),line5_1(i__),log_SNRl5_1(i__),
     +  log_Slin5_1(i__),line6_1(i__),log_SNRl6_1(i__),
     +  log_Slin6_1(i__)
c    ..............Just test output...........
        write(6,2)
     +  Name_1(i__),RAdeg_1(i__),DEdeg_1(i__),z_1(i__),Mask_1(i__),
     +  Temp_1(i__),ExtB_1(i__),F814W_1(i__),e_F814W_1(i__),
     +  Stell_1(i__),F365W_1(i__),e_F365W_1(i__),F396W_1(i__),
     +  e_F396W_1(i__),F427W_1(i__),e_F427W_1(i__),F458W_1(i__),
     +  e_F458W_1(i__),F489W_1(i__),e_F489W_1(i__),F520W_1(i__),
     +  e_F520W_1(i__),F551W_1(i__),e_F551W_1(i__),F582W_1(i__),
     +  e_F582W_1(i__),F613W_1(i__),e_F613W_1(i__),F644W_1(i__),
     +  e_F644W_1(i__),F675W_1(i__),e_F675W_1(i__),F706W_1(i__),
     +  e_F706W_1(i__),F737W_1(i__),e_F737W_1(i__),F768W_1(i__),
     +  e_F768W_1(i__),F799W_1(i__),e_F799W_1(i__),F830W_1(i__),
     +  e_F830W_1(i__),F861W_1(i__),e_F861W_1(i__),F892W_1(i__),
     +  e_F892W_1(i__),F923W_1(i__),e_F923W_1(i__),F954W_1(i__),
     +  e_F954W_1(i__),FJ_1(i__),e_FJ_1(i__),FH_1(i__),e_FH_1(i__),
     +  FKs_1(i__),e_FKs_1(i__),line1_1(i__),log_SNRl1_1(i__),
     +  log_Slin1_1(i__),line2_1(i__),log_SNRl2_1(i__),
     +  log_Slin2_1(i__),line3_1(i__),log_SNRl3_1(i__),
     +  log_Slin3_1(i__),line4_1(i__),log_SNRl4_1(i__),
     +  log_Slin4_1(i__),line5_1(i__),log_SNRl5_1(i__),
     +  log_Slin5_1(i__),line6_1(i__),log_SNRl6_1(i__),
     +  log_Slin6_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end