FORTRAN Generation
(/./ftp/cats/J/MNRAS/468/4735)

Conversion of standardized ReadMe file for file /./ftp/cats/J/MNRAS/468/4735 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Apr-20
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/MNRAS/468/4735    Spectral evolution of 4U 1543-47 in 2002 (Lipunova+, 2017)
*================================================================================
*Determination of the turbulent parameter in accretion discs:
*effects of self-irradiation in 4U 1543-47 during the 2002 outburst.
*    Lipunova G.V., Malanchev K.L.
*   <Mon. Not. R. Astron. Soc., 468, 4735-4747 (2017)>
*   =2017MNRAS.468.4735L    (SIMBAD/NED BibCode)
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'figure1.dat'	! Evolution of spectral parameters of
                                 4U 1543-47 during the 2002 outburst

      integer*4 nr__
      parameter (nr__=58)	! Number of records
      character*302 ar__   	! Full-size record

      character*15  ObsID      (nr__) ! Observation ID (1)
      real*8        tbegin     (nr__) ! (s) Observation start (Julian date)
      real*8        tend       (nr__) ! (s) Observation end (Julian date)
      real*8        chi2       (nr__) ! Chi-square of the spectral fit (2)
      integer*4     dof        (nr__) ! Number of degrees of freedom of the
*                                     spectral fit (3)
      real*4        FDisc_min  (nr__) ! (mW/m2) Lower boundary of 1-sigma confidence
*                                     interval on the disc flux (4)
      real*4        FDisc_max  (nr__) ! (mW/m2) Upper boundary of 1-sigma confidence
*                                     interval on the disc flux (4)
      real*4        FTot_min   (nr__) ! (mW/m2) Lower boundary of 1-sigma confidence
*                                     interval on the total flux (5)
      real*4        FTot_max   (nr__) ! (mW/m2) Upper boundary of 1-sigma confidence
*                                     interval on the total flux (5)
      real*8        Gamma      (nr__) ! Best-fit value of the photon power law index
*                                     in the spectral component simpl
      real*8        b_Gamma    (nr__) ! Lower boundary of 1-sigma confidence
*                                     interval for Gamma
      real*8        B_Gamma_1  (nr__) ! Upper boundary of 1-sigma confidence
*                                     interval for Gamma
      real*8        FracSctr   (nr__) ! Best-fit value of the scattered fraction in
*                                     the spectral component simpl
      real*8        b_FracSctr (nr__) ! Lower boundary of 1-sigma confidence
*                                     interval for FracSctr
      real*8        B_FracSctr_1(nr__) ! Upper boundary of 1-sigma confidence
*                                     interval for FracSctr
      real*8        dotM       (nr__) ! (10+18g/s) Best-fit value of the mass accretion rate of
*                                     the disc in the spectral component kerrbb
      real*8        b_dotM     (nr__) ! (10+18g/s) Lower boundary of 1-sigma confidence
*                                     interval for dotM
      real*8        B_dotM_1   (nr__) ! (10+18g/s) Upper boundary of 1-sigma confidence
*                                     interval for dotM
      real*8        dist       (nr__) ! (kpc) Best-fit value of the distance in the
*                                     spectral component kerrbb (6)
      real*8        b_dist     (nr__) ! (kpc) ?=99.99 Lower boundary of 1-sigma confidence
*                                     interval for dist (6)
      real*8        B_dist_1   (nr__) ! (kpc) ?=99.99 Upper boundary of 1-sigma confidence
*                                     interval for dist (6)
      real*8        LineE      (nr__) ! (keV) Best-fit value of the line energy in the
*                                     spectral component laor
      real*8        b_LineE    (nr__) ! (keV) ?=0 Lower boundary of 1-sigma confidence
*                                     interval for LineE
      real*8        B_LineE_1  (nr__) ! (keV) ?=0 Upper boundary of 1-sigma confidence
*                                     interval for LineE
      real*8        norm       (nr__) ! (ph/cm2/s) Best-fit value of the photon flux in the
*                                     spectral component laor
      real*8        b_norm     (nr__) ! (ph/cm2/s) ?=99.99 Lower boundary of 1-sigma confidence
*                                     interval for norm
      real*8        B_norm_1   (nr__) ! (ph/cm2/s) Upper boundary of 1-sigma confidence
*                                     interval for norm
      real*8        edgeE      (nr__) ! (keV) Best-fit value of the threshold energy in
*                                     the spectral component smedge
      real*8        b_edgeE    (nr__) ! (keV) ?=99.99 Lower boundary of 1-sigma confidence
*                                     interval for edgeE
      real*8        B_edgeE_1  (nr__) ! (keV) Upper boundary of 1-sigma confidence
*                                     interval for edgeE
      real*8        MaxTau     (nr__) ! Best-fit value of the maximum absorption
*                                     factor at threshold in the spectral
*                                     component smedge
      real*8        b_MaxTau   (nr__) ! ?=99.99 Lower boundary of 1-sigma confidence
*                                     interval for MaxTau
      real*8        B_MaxTau_1 (nr__) ! Upper boundary of 1-sigma confidence
*                                     interval for MaxTau
*Note (1): Some rows have the same ObsID because an original observation
*    was divided in two parts.
*Note (2): The XSPEC spectral model consists of the following spectral
*    components: TBabs((simpl*kerrbb+laor)smedge). Full description of the
*    spectral parameters can be found in Table A1 and Appendix A of the paper.
*Note (3): The number of the degrees of freedom depends on whether the parameter
*    dist of the spectral component kerrbb is fixed or not (see also the caption
*    of Figure 1 in the paper).
*    dof=40 if the distance to the source was estimated during fitting,
*    dof=41 if the distance was fixed. The number of the spectral channels
*    is 49 for all observations. The total number of the spectral model
*    parameters, free and frozen, is 24.
*Note (4): The model flux before absorption in the energy band 0.05-50 keV
*    of the following spectral model components: (kerrbb+laor)smedge.
*Note (5): The model flux before absorption in the energy band 0.05-50 keV
*    of the following spectral model components:
*    (simpl*kerrbb+laor)smedge.
*Note (6): If the lower and upper boundaries of parameter dist are
*    unspecified, this means that the distance was fixed during fitting.

C=============================================================================

C  Loading file 'figure1.dat'	! Evolution of spectral parameters of
*                                 4U 1543-47 during the 2002 outburst

C  Format for file interpretation

    1 format(
     +  A15,1X,F16.8,1X,F16.8,1X,F7.4,1X,I2,1X,E10.5,1X,E10.5,1X,
     +  E10.5,1X,E10.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,
     +  F7.5,1X,F8.5,1X,F8.5,1X,F8.5,1X,F8.5,1X,F8.5,1X,F8.5,1X,F7.5,
     +  1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,F7.5,1X,
     +  F7.5,1X,F7.5,1X,F7.5,1X,F7.5)

C  Effective file loading

      open(unit=1,status='old',file=
     +'figure1.dat')
      write(6,*) '....Loading file: figure1.dat'
      do i__=1,58
        read(1,'(A302)')ar__
        read(ar__,1)
     +  ObsID(i__),tbegin(i__),tend(i__),chi2(i__),dof(i__),
     +  FDisc_min(i__),FDisc_max(i__),FTot_min(i__),FTot_max(i__),
     +  Gamma(i__),b_Gamma(i__),B_Gamma_1(i__),FracSctr(i__),
     +  b_FracSctr(i__),B_FracSctr_1(i__),dotM(i__),b_dotM(i__),
     +  B_dotM_1(i__),dist(i__),b_dist(i__),B_dist_1(i__),LineE(i__),
     +  b_LineE(i__),B_LineE_1(i__),norm(i__),b_norm(i__),
     +  B_norm_1(i__),edgeE(i__),b_edgeE(i__),B_edgeE_1(i__),
     +  MaxTau(i__),b_MaxTau(i__),B_MaxTau_1(i__)
c    ..............Just test output...........
        write(6,1)
     +  ObsID(i__),tbegin(i__),tend(i__),chi2(i__),dof(i__),
     +  FDisc_min(i__),FDisc_max(i__),FTot_min(i__),FTot_max(i__),
     +  Gamma(i__),b_Gamma(i__),B_Gamma_1(i__),FracSctr(i__),
     +  b_FracSctr(i__),B_FracSctr_1(i__),dotM(i__),b_dotM(i__),
     +  B_dotM_1(i__),dist(i__),b_dist(i__),B_dist_1(i__),LineE(i__),
     +  b_LineE(i__),B_LineE_1(i__),norm(i__),b_norm(i__),
     +  B_norm_1(i__),edgeE(i__),b_edgeE(i__),B_edgeE_1(i__),
     +  MaxTau(i__),b_MaxTau(i__),B_MaxTau_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end