FORTRAN Generation
(/./ftp/cats/J/ApJ/836/99)

Conversion of standardized ReadMe file for file /./ftp/cats/J/ApJ/836/99 into FORTRAN code for reading data files line by line.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Apr-18
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/ApJ/836/99 NuSTAR serendipitous survey: the 40-month catalog (Lansbury+, 2017)
*================================================================================
*The NuSTAR serendipitous survey: the 40-month catalog and the properties of the
*distant high-energy X-ray source population.
*    Lansbury G.B., Stern D., Aird J., Alexander D.M., Fuentes C.,
*    Harrison F.A., Treister E., Bauer F.E., Tomsick J.A., Balokovic M.,
*    Del Moro A., Gandhi P., Ajello M., Annuar A., Ballantyne D.R., Boggs S.E.,
*    Brandt W.N., Brightman M., Chen C.-T.J., Christensen F.E., Civano F.,
*    Comastri A., Craig W.W., Forster K., Grefenstette B.W., Hailey C.J.,
*    Hickox R.C., Jiang B., Jun H.D., Koss M., Marchesi S., Melo A.D.,
*    Mullaney J.R., Noirot G., Schulze S., Walton D.J., Zappacosta L.,
*    Zhang W.W.
*   <Astrophys. J., 836, 99-99 (2017)>
*   =2017ApJ...836...99L    (SIMBAD/NED BibCode)
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table1.dat'	! Details of the individual NuSTAR observations which
                              make up the serendipitous survey

      integer*4 nr__
      parameter (nr__=591)	! Number of records
      character*82 ar__   	! Full-size record

C  J2000 position composed of: RAdeg DEdeg
      character*4   Field       ! Field identifier (1)
      character*23  Target      ! Primary science target identifier
      integer*4     NObs        ! [1/15]? Number of individual exposures in Field
      integer*8     ObsID       ! ? Observation identifier
      character*10  Date        ! ("Y/M/D") ? Field observation start UT date
      real*4        RAdeg       ! (deg) ? Aim point Right Ascension (J2000)
      real*4        DEdeg       ! (deg) ? Aim point Declination (J2000)
      real*4        Exp         ! (ks) [1.8/1104] Exposure time (2)
      integer*4     N           ! [0/12]? Number of serendipitous sources detected
      integer*4     A15         ! [0/1]? Aird+ 2015ApJ...815...66A flag (3)
      integer*4     H16         ! [0/1]? Harrison+ 2016ApJ...831..185H flag (3)
*Note (1): For fields with multiple NuSTAR exposures (i.e., Nobs>1), each
*          individual component exposure is listed with a letter suffixed to the
*          field ID (e.g., 3a and 3b).
*Note (2): For a single focal plane module (i.e., averaged over FPMA and FPMB).
*Note (3): Binary flags to highlight the serendipitous survey fields used for
*          the Aird+ 2015ApJ...815...66A and Harrison+ 2016ApJ...831..185H
*          studies.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table5.dat'	! The primary NuSTAR serendipitous source catalog

      integer*4 nr__1
      parameter (nr__1=498)	! Number of records
      character*903 ar__1  	! Full-size record

C  J2000 position composed of: RAdeg DEdeg
      integer*4     Seq         ! [1/498] Running sequence number
      character*14  NuSTAR      ! Unique NuSTAR source name (JHHMMSS+DDMM.m)
      real*8        RAdeg_1     ! (deg) Right Ascension in decimal degrees (J2000)
      real*8        DEdeg_1     ! (deg) Declination in decimal degrees (J2000)
      integer*4     SFl         ! [0/1] Soft (3-8keV) band detection flag (1)
      integer*4     HFl         ! [0/1] Hard (8-24keV) band detection flag (1)
      integer*4     FFl         ! [0/1] Full (3-24keV) band detection flag (1)
      integer*4     SdbFl       ! [0/1] Deblended soft band detection flag (2)
      integer*4     HdbFl       ! [0/1] Deblended hard band detection flag (2)
      integer*4     FdbFl       ! [0/1] Deblended full band detection flag (2)
      real*8        logSP       ! ([-]) [-44/-0.003]?=-999 Log of soft band false
*                                  probability; Section 2.3
      real*8        logHP       ! ([-]) [-42/-0.03]?=-999 Log of hard band false
*                                  probability; Section 2.3
      real*8        logFP       ! ([-]) [-44/-1.7]?=-999 Log of full band false
*                                  probability; Section 2.3
      real*8        logSdbP     ! ([-]) [-306/-0.003]?=-999 Log of deblended soft band
*                                  false probability
      real*8        logHdbP     ! ([-]) [-231/-0.03]?=-999 Log of deblended hard band
*                                  false probability
      real*8        logFdbP     ! ([-]) [-246/-1.7]?=-999 Log of deblended full band
*                                  false probability
      integer*4     dbFl        ! [0/1] Source remains significant after
*                                  deblending flag (3)
      real*8        Scts        ! (ct) [8/11132] Total soft (3-8keV) band counts (4)
      real*8        e_Scts      ! (ct) [3/107] The 84% confidence level in Scts
      real*8        SBck        ! (ct) [10/2568] Soft background counts scaled
*                                  to source aperture (4)
      real*8        SNet        ! (ct) [5/9881] Net soft (3-8keV) band counts;
*                                  Scts-SBck (4)
      real*8        e_SNet      ! (ct) [-99/107] The error in SNet (5)
      real*4        Hcts        ! (ct) [15/6680] Total hard (8-24keV) band counts (4)
      real*4        e_Hcts      ! (ct) [4/83] The 84% confidence level in Hcts
      real*8        HBck        ! (ct) [7/1620] Hard background counts scaled
*                                  to source aperture (4)
      real*8        HNet        ! (ct) [5/5854] Net hard (8-24keV) band counts;
*                                  Hcts-HBck (4)
      real*8        e_HNet      ! (ct) [-99/83] The error in HNet (5)
      real*8        Fcts        ! (ct) [32/17765] Total full (3-24keV) band counts (4)
      real*8        e_Fcts      ! (ct) [6/135] The 84% confidence level in Fcts
      real*8        FBck        ! (ct) [18/4178] Full background counts scaled
*                                  to source aperture (4)
      real*8        FNet        ! (ct) [18/15694] Net full (3-24keV) band counts;
*                                  Fcts-FBck (4)
      real*8        e_FNet      ! (ct) [-99/135] The error in FNet (5)
      real*8        Sdbcts      ! (ct) [8/11132] Total deblended soft band counts (4)
      real*8        e_Sdbcts    ! (ct) [10/2568] The 84% confidence level in Sdbcts
      real*8        SdbNet      ! (ct) [5/9881] Net deblended soft band
*                                  counts; Sdbcts-SdbBck (4)
      real*8        e_SdbNet    ! (ct) [-99/107] The error in SdbNet (5)
      real*4        Hdbcts      ! (ct) [15/6680] Total deblended hard band counts (4)
      real*8        e_Hdbcts    ! (ct) [7/1620] The 84% confidence level in Hdbcts
      real*8        HdbNet      ! (ct) [5/5854] Net deblended hard band
*                                  counts; Hdbcts-HdbBck (4)
      real*8        e_HdbNet    ! (ct) [-99/83] The error in HdbNet (5)
      real*8        Fdbcts      ! (ct) [32/17765] Total deblended full band counts (4)
      real*8        e_Fdbcts    ! (ct) [18/4178] The 84% confidence level in Fdbcts
      real*8        FdbNet      ! (ct) [18/15694] Net deblended full band
*                                  counts; Fdbcts-FdbBck (4)
      real*8        e_FdbNet    ! (ct) [-99/135] The error in FdbNet (5)
      real*8        Sexp        ! (s) [12556/] Soft band exposure time (6)
      real*8        Hexp        ! (s) [10166/] Hard band exposure time (6)
      real*8        Fexp        ! (s) [10172/] Full band exposure time (6)
      real*4        SCR         ! (ct/s) [0.0004/0.06] Total soft band count rate (7)
      real*4        e_SCR       ! (ct/s) [/0.002] The 84% confidence level in SCR
      real*4        SCRBck      ! (ct/s) [0.0004/0.007] Soft background count rate (7)
      real*4        SNCR        ! (ct/s) [/0.06] Net soft count rate (7)
      real*4        e_SNCR      ! (ct/s) [-99/0.002] The error in SNCR (5)
      real*4        HCR         ! (ct/s) [0.0005/0.05] Total hard band count rate (7)
      real*4        e_HCR       ! (ct/s) [/0.001] The 84% confidence level in HCR
      real*4        HCRBck      ! (ct/s) [0.0006/0.005] Hard background count rate (7)
      real*4        HNCR        ! (ct/s) [/0.04] Net hard count rate (7)
      real*4        e_HNCR      ! (ct/s) [-99/0.001] The error in HNCR (5)
      real*4        FCR         ! (ct/s) [0.001/0.2] Total full band count rate (7)
      real*4        e_FCR       ! (ct/s) [/0.002] The 84% confidence level in FCR
      real*4        FCRBck      ! (ct/s) [0.001/0.02] Full background count rate (7)
      real*4        FNCR        ! (ct/s) [0.0001/0.1] Net full count rate (7)
      real*4        e_FNCR      ! (ct/s) [-99/0.002] The error in FNCR (5)
      real*4        SdbNCR      ! (ct/s) [/0.06] Deblended net soft count rate (7)
      real*4        e_SdbNCR    ! (ct/s) [-99/0.002] The 84% confidence level
*                                  in SdbNCR
      real*4        HdbNCR      ! (ct/s) [/0.04] Deblended net hard count rate (7)
      real*4        e_HdbNCR    ! (ct/s) [-99/0.001] The 84% confidence level
*                                  in HdbNCR
      real*4        FdbNCR      ! (ct/s) [0.0001/0.1] Deblended net full count rate (7)
      real*4        e_FdbNCR    ! (ct/s) [-99/0.002] The 84% confidence level
*                                  in FdbNCR
      real*4        H_S         ! [/7.5]?=0 Hard to Soft band ratio
      real*8        E_H_S       ! [-99/1] Upper error on H/S (8)
      real*8        e_H_S_1     ! [-99/1] Lower error on H/S (8)
      real*4        gamma       ! [-0.5/3]? Effective photon index
      real*8        E_gamma     ! [-99/1]? Upper error on gamma (8)
      real*8        e_gamma_1   ! [-99/0.6]? Lower error on gamma (8)
      real*4        SFlux       ! (mW/m2) Observed-frame soft flux (9)
      real*4        e_SFlux     ! (mW/m2) ?=-99 The 84% confidence level in SFlux
      real*4        HFlux       ! (mW/m2) Observed-frame hard flux (9)
      real*4        e_HFlux     ! (mW/m2) ?=-99 The 84% confidence level in HFlux
      real*4        FFlux       ! (mW/m2) Observed-frame full flux (9)
      real*4        e_FFlux     ! (mW/m2) ?=-99 The 84% confidence level in FFlux
      character*8   XOrig       ! Soft X-ray counterpart code (10)
      real*8        RAXdeg      ! (deg) ? Soft X-ray counterpart Right Ascension in
*                                  decimal degrees (J2000)
      real*8        DEXdeg      ! (deg) ? Soft X-ray counterpart Declination in
*                                  decimal degrees (J2000)
      real*4        XOff        ! (arcsec) [0.5/37]? Soft X-ray and NuSTAR position offset
      real*4        XFlux       ! (mW/m2) [0/2e-12]? Observed-frame 3-8 keV X-ray
*                                  counterpart flux (11)
      real*4        XTFlux      ! (mW/m2) [0/2e-12]? Total combined 3-8 keV X-ray flux
*                                  within 30" of NUSTAR
      real*8        RAWdeg      ! (deg) ? WISE counterpart Right Ascension in
*                                  decimal degrees (J2000)
      real*8        DEWdeg      ! (deg) ? WISE counterpart Declination in
*                                  decimal degrees (J2000)
      real*4        IROff       ! (arcsec) [0.05/6]? WISE and NuSTAR position offset
      real*4        W1mag       ! (mag) [5.6/18.8]? WISE W1 band, 3.4um, profile-fit
*                                  Vega magnitude
      real*4        e_W1mag     ! (mag) [0.02/0.3]? Error in W1mag (12)
      real*4        W2mag       ! (mag) [3.8/17.4]? WISE W2 band, 4.6um, profile-fit
*                                  Vega magnitude
      real*4        e_W2mag     ! (mag) ? Error in W2mag (12)
      real*4        W3mag       ! (mag) [4/14]? WISE W3 band, 12 micron, profile-fit
*                                  Vega magnitude
      real*4        e_W3mag     ! (mag) ? Error in W3mag (12)
      real*4        W4mag       ! (mag) [1.7/10.2]? WISE W4 band, 22um, profile-fit
*                                  Vega magnitude
      real*4        e_W4mag     ! (mag) ? Error in W4mag (12)
      character*9   OOrig       ! Adopted optical counterpart code (13)
      real*8        RAOdeg      ! (deg) ? Optical counterpart Right Ascension in
*                                  decimal degrees (J2000)
      real*8        DEOdeg      ! (deg) ? Optical counterpart Declination in
*                                  decimal degrees (J2000)
      real*4        OOff        ! (arcsec) [0.02/6]? Optical and NuSTAR position offset
      real*8        Rmag        ! (mag) [-99/24.3]? Optical counterpart R band Vega
*                                  magnitude (14)
      real*4        zsp         ! [0/3.5]? Spectroscopic redshift (15)
      real*4        XLum        ! (10-7W) ? Rest-frame 10-40 keV luminosity (16)
      integer*4     PFl         ! [0/1] Source associated with primary science
*                                  target (17)
      integer*4     A15Fl       ! [0/1] Aird+ 2015ApJ...815...66A flag (18)
*Note (1): A binary flag indicating whether the source is detected with a false
*          probability lower than our threshold of log(PFalse)=-6.
*Note (2): Same as previous columns but after deblending has been performed to
*          account for contamination of the source counts from very nearby
*          sources (see Section 2.4 of this paper, and Section 2.3.2 of
*          Mullaney+ (2015, J/ApJ/808/184). Deblending only affects a
*          very small fraction of the overall sample (e.g., see Section 2.4).
*Note (3): A binary flag indicating whether the NuSTAR detected source remains
*          significant after deblending, in at least one of the three standard
*          energy bands.
*Note (4): Calculated at the source coordinates, and using a source aperture of
*          30" radius (see Section 2.4). The values are non-aperture-corrected;
*          i.e., they correspond to the 30" values, and have not been corrected
*          to the full PSF values.
*Note (5): For the net source counts, we give 90% CL upper limits for sources
*          not detected in a given band. Throughout the table, upper limits are
*          flagged with a -99 value in the error column.
*Note (6): The average net, vignetting-corrected exposure time at the source
*          coordinates. These correspond to the A+B data, so should be divided
*          by two to obtain the average exposure per FPM.
*Note (7): Non-aperture-corrected. Determined from the photometric values
*          and the exposure times.
*Note (8): Upper limits, lower limits, and sources with no constraints are
*          flagged with -99, -88, and -77 values, respectively, in the
*          error columns.
*Note (9): After deblending has been performed. These are aperture corrected
*          values (i.e., they correspond to the full NuSTAR PSF), and are
*          calculated from the count rates using the conversion factors
*          listed in Section 2.4.
*Note (10): An abbreviated code indicating the origin of the adopted soft (i.e.,
*           low energy; <10keV) X-ray counterpart. Code as follows:
*   CXO_CSC = counterparts from the Chandra Source Catalog (CSC; 82 occurrences;
*             Evans+ 2010, Cat. IX/45).
*  XMM_3XMM = counterparts from the third XMM-Newton serendipitous source catalog
*             (3XMM; 203 occurrences; Watson+ 2009, J/A+A/493/339 ;
*             Rosen+ 2016, IX/50).
*   CXO_MAN = sources manually identified using archival Chandra (27 occurrences)
*   XMM_MAN = sources manually identified using archival XMM-Newton
*              (24 occurrences)
*   XRT_MAN = sources manually identified using archival Swift XRT data
*              (60 occurrences).
*           Section 3.1 details the counterpart matching.
*Note (11): For sources with counterparts in the CSC and 3XMM catalogs. For CSC
*           sources we convert to the 3-8keV flux from the 2-7keV flux using a
*           conversion factor of 0.83, and for the 3XMM sources we convert from
*           the 4.5-12keV flux using a conversion factor of 0.92.
*Note (12): Blanks in the errors indicates the magnitude is a WISE upper limit.
*Note (13): An abbreviated code indicating the origin of the adopted optical
*           counterpart to the NuSTAR source. Code as follows:
* SDSS      = sources with soft X-ray counterparts and successful matches in
*             the SDSS DR7 catalog (York+ 2000AJ....120.1579Y); 127 occurrences
* USNO      = sources with soft X-ray counterparts and successful matches in
*             the USNOB1 catalog (Monet+ 2003, I/284); 166 occurrences
* MAN       = sources with a soft X-ray counterpart and a corresponding optical
*             counterpart manually identified in the available optical coverage;
*             181 occurrences
* SDSS_WISE = there is no soft X-ray counterpart to the NuSTAR position, but a
*             WISE AGN candidate is identified within the NuSTAR error circle
*             and successfully matched to the SDSS DR7 (these are mainly used as
*             candidates for spectroscopic followup); 11 occurrences.
* USNO_WISE = there is no soft X-ray counterpart to the NuSTAR position, but a
*             WISE AGN candidate is identified within the NuSTAR error circle
*             and successfully matched to the USNOB1 catalog (these are mainly
*             used as candidates for spectroscopic followup; 6 occurrences).
*             We give a detailed description of the procedure used to identify
*             optical counterparts in Section 3.2.
*Note (14): For the SDSS DR7 matches, this is calculated as R=r-0.16. For
*           the USNOB1 matches, this is taken as the mean of the two independent
*           photographic plate measurements, R1mag and R2mag. For the manual
*           identifications, the magnitude is taken from another optical catalog
*           or manually determined from the imaging data.
*Note (15): The large majority of the redshifts were obtained through our own
*           campaign of ground-based spectroscopic followup of NuSTAR
*           serendipitous survey sources (see Section 3.3.1 and
*           the "Description" section above).
*Note (16): Estimated from the observed-frame fluxes, following the procedure
*           outlined in Section 2.4. Negative values indicate upper limits. The
*           luminosities are observed values, uncorrected for any absorption
*           along the line of sight. The intrinsic luminosities may therefore
*           be higher, for highly absorbed AGNs.
*Note (17): A binary flag indicating the few sources which show evidence for
*           being associated with the primary science targets of their
*           respective NuSTAR observations, according to the definition in
*           Section 2.3 [{Delta}(cz)<0.05cz].
*Note (18): A binary flag highlighting the sources used in the
*           Aird+ (2015ApJ...815...66A) study.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table6.dat'	! Summary of the optical spectroscopy for the NuSTAR
                              serendipitous survey sources

      integer*4 nr__2
      parameter (nr__2=303)	! Number of records
      character*234 ar__2  	! Full-size record

      integer*4     Seq_1       ! [1/498] Unique source identification number
      character*14  NuSTAR_1    ! Unique NuSTAR source name (JHHMMSS+DDMM.m)
      real*4        z           ! [0/3.5]? Source spectroscopic redshift
      character*7   Type        ! Classification (1)
      character*122 Lines       ! Emission/absorption lines identified (2)
      character*68  Notes       ! Source notes and literature spectra references
      character*2   Run         ! Unique observing run identification number (3)
*Note (1): Classification (for primary sources) as follows:
*  BL       = broad-line AGN (151 occurrences + 11 BL?)
*  NL       = narrow-line AGN (84 occurrences + 13 NL?)
*  BL Lac?  = BL Lac object candidate (1 occurrence)
*  Gal      = Galactic objects (z=0; 16 occurrences)
*
*          See Section 3.3.2 for further details.
*Note (2): Absorption line/feature marked with "dg" footnote.
*Note (3): As defined in Table 4 ("S" and "L" mark spectra obtained from the
*          SDSS and from elsewhere in the literature, respectively).

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table7.dat'	! The secondary NuSTAR serendipitous source catalog

      integer*4 nr__3
      parameter (nr__3=64)	! Number of records
      character*377 ar__3  	! Full-size record

C  J2000 position composed of: RAdeg DEdeg
      integer*4     Seq_2       ! [1/64] Unique source identification number
      character*14  NuSTAR_2    ! Unique NuSTAR source name (JHHMMSS+DDMM.m)
      real*8        RAdeg_2     ! (deg) Right Ascension in decimal degrees (J2000)
      real*8        DEdeg_2     ! (deg) Declination in decimal degrees (J2000)
      real*8        Scts_1      ! (ct) [36/7049]? Total soft band (3-8keV) counts (1)
      real*8        SBck_1      ! (ct) ? Soft background counts (1)
      real*8        SNet_1      ! (ct) [16/6633]? Net soft band counts (1)
      real*8        e_SNet_1    ! (ct) [-99/85]? The error in SNet (2)
      real*8        Hcts_1      ! (ct) ? Total hard band (8-24 keV) counts (1)
      real*8        HBck_1      ! (ct) ? Hard background counts (1)
      real*8        HNet_1      ! (ct) [13/4306]? Net hard band counts (1)
      real*8        e_HNet_1    ! (ct) [-99/69]? The error in HNet (2)
      real*8        Fcts_1      ! (ct) [85/11617]? Total full band (3-24keV) counts (1)
      real*8        FBck_1      ! (ct) ? Full background counts (1)
      real*8        FNet_1      ! (ct) [22/10900]? Net full band counts (1)
      real*8        e_FNet_1    ! (ct) [-99/109]? The error in FNet (2)
      real*8        Sexp_1      ! (s) [14375/643091]? Soft band exposure time (3)
      real*8        Hexp_1      ! (s) ? Hard band exposure time (3)
      real*8        Fexp_1      ! (s) ? Full band exposure time (3)
      real*4        SNCR_1      ! (ct/s) [0.0003/0.5]? Net soft count rate,
*                                 aperture-corrected (4)
      real*4        e_SNCR_1    ! (ct/s) [-99/0.006]? The error in SNCR (2)
      real*4        HNCR_1      ! (ct/s) [0.0003/0.4]? Net hard count rate,
*                                 aperture-corrected (4)
      real*4        e_HNCR_1    ! (ct/s) [-99/0.006]? The error in HNCR (2)
      real*4        FNCR_1      ! (ct/s) [0.0005/1]? Net full count rate,
*                                 aperture-corrected (4)
      real*4        e_FNCR_1    ! (ct/s) [-99/0.01]? The error in FNCR (2)
      real*4        SFlux_1     ! (mW/m2) ? Observed-frame soft flux (5)
      real*4        e_SFlux_1   ! (mW/m2) [-99/]? The 84% confidence level in SFlux
      real*4        HFlux_1     ! (mW/m2) ? Observed-frame hard flux (5)
      real*4        e_HFlux_1   ! (mW/m2) [-99/]? The 84% confidence level in HFlux
      real*4        FFlux_1     ! (mW/m2) ? Observed-frame full flux (5)
      real*4        e_FFlux_1   ! (mW/m2) [-99/]? The 84% confidence level in FFlux
      character*3   XName       ! Lower energy X-ray counterpart observatory name
      real*8        RAXdeg_1    ! (deg) ? Lower energy X-ray counterpart Right Ascension
*                                 in decimal degrees (J2000)
      real*8        DEXdeg_1    ! (deg) ? Lower energy X-ray counterpart Declination
*                                 in decimal degrees (J2000)
      character*4   OName       ! Other, optical or WISE, counterpart
*                                 observatory name
      real*8        RAOdeg_1    ! (deg) ? Other counterpart Right Ascension in
*                                 decimal degrees (J2000)
      real*8        DEOdeg_1    ! (deg) ? Other counterpart Declination in
*                                 decimal degrees (J2000)
      real*4        zsp_1       ! [0/1.9]? Spectroscopic redshift (6)
      real*4        XLum_1      ! (10-7W) ? Non-absorption-corrected, rest-frame
*                                 10-40keV luminosity (7)
      character*1   Fl          ! Primary catalog code (8)
*Note (1): Calculated at the source coordinates. The values are
*          non-aperture-corrected.
*Note (2): For the net source counts, we give 90% CL upper limits for sources
*          not detected in a given band. Throughout the table, upper limits are
*          flagged with a -99 value in the error column. The photometric columns
*          are blank where the A+B data prohibit reliable photometric
*          constraints.
*Note (3): The average net, vignetting-corrected exposure time at the source
*          coordinates. These correspond to the A+B data, so should be divided
*          by two to obtain the average exposure per FPM.
*Note (4): Determined from the photometric values and the exposure times.
*Note (5): After deblending has been performed. These are aperture corrected
*          values (i.e., they correspond to the full NuSTAR PSF), and are
*          calculated from the count rates using the conversion factors
*          listed in Section 2.4.
*Note (6): The large majority of the redshifts were obtained through our own
*          campaign of ground-based spectroscopic followup of NuSTAR
*          serendipitous survey sources (see Section 3.3.1 and
*          the "Description" section above).
*Note (7): Estimated from the observed-frame fluxes, following the procedure
*          outlined in Section 2.4. Negative values indicate upper limits. The
*          luminosities are observed values, uncorrected for any absorption
*          along the line of sight. The intrinsic luminosities may therefore
*          be higher, for highly absorbed AGNs.
*Note (8): A character indicating the reason for not being included in the
*          primary catalog. These are categorised into four groups as follows:
*   E = the source is within or very close to the peripheral region of the NuSTAR
*       mosaic, which is excluded from the primary source detection (33% of
*       cases);
*   T = the source is narrowly offset from the central science target position
*       for the NuSTAR observation (and thus automatically excluded;
*       see Section 2.3), or from another bright source in the field (11%);
*   X = the source lies in a region which is masked out, or in a NuSTAR field
*       which is excluded, from the primary source detection (44%; e.g., due to
*       highly contaminating stray light or a bright science target); or
*   L = the source has a comparatively low detection significance (12%).

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table8.dat'	! Summary of the optical spectroscopy for
                              the secondary catalog sources

      integer*4 nr__4
      parameter (nr__4=46)	! Number of records
      character*234 ar__4  	! Full-size record

      integer*4     Seq_3       ! [1/498] Unique source identification number
      character*14  NuSTAR_3    ! Unique NuSTAR source name (JHHMMSS+DDMM.m)
      real*4        z_1         ! [0/3.5]? Source spectroscopic redshift
      character*7   Type_1      ! Classification (1)
      character*122 Lines_1     ! Emission/absorption lines identified (2)
      character*68  Notes_1     ! Source notes and literature spectra references
      character*2   Run_1       ! Unique observing run identification number (3)
*Note (1): Classification (for primary sources) as follows:
*  BL       = broad-line AGN (151 occurrences + 11 BL?)
*  NL       = narrow-line AGN (84 occurrences + 13 NL?)
*  BL Lac?  = BL Lac object candidate (1 occurrence)
*  Gal      = Galactic objects (z=0; 16 occurrences)
*
*          See Section 3.3.2 for further details.
*Note (2): Absorption line/feature marked with "dg" footnote.
*Note (3): As defined in Table 4 ("S" and "L" mark spectra obtained from the
*          SDSS and from elsewhere in the literature, respectively).

C=============================================================================

C  Loading file 'table1.dat'	! Details of the individual NuSTAR observations which
*                              make up the serendipitous survey

C  Format for file interpretation

    1 format(
     +  A4,1X,A23,1X,I2,1X,I11,1X,A10,1X,F6.2,1X,F6.2,1X,F6.1,1X,I2,
     +  1X,I1,1X,I1)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table1.dat')
      write(6,*) '....Loading file: table1.dat'
      do i__=1,591
        read(1,'(A82)')ar__
        read(ar__,1)
     +  Field,Target,NObs,ObsID,Date,RAdeg,DEdeg,Exp,N,A15,H16
        if(ar__(30:31) .EQ. '') NObs = iNULL__
        if(ar__(33:43) .EQ. '') ObsID = iNULL__
        if(ar__(56:61) .EQ. '') RAdeg = rNULL__
        if(ar__(63:68) .EQ. '') DEdeg = rNULL__
        if(ar__(77:78) .EQ. '') N = iNULL__
        if(ar__(80:80) .EQ. '') A15 = iNULL__
        if(ar__(82:82) .EQ. '') H16 = iNULL__
c    ..............Just test output...........
        write(6,1)
     +  Field,Target,NObs,ObsID,Date,RAdeg,DEdeg,Exp,N,A15,H16
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table5.dat'	! The primary NuSTAR serendipitous source catalog

C  Format for file interpretation

    2 format(
     +  I3,7X,A14,1X,F10.6,1X,F10.6,1X,I1,1X,I1,1X,I1,1X,I1,1X,I1,1X,
     +  I1,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,I1,1X,
     +  F7.1,1X,F7.3,1X,F8.3,1X,F8.3,1X,F7.3,1X,F6.1,1X,F6.3,1X,F8.3,
     +  1X,F8.3,1X,F7.3,1X,F7.1,1X,F7.3,1X,F8.3,1X,F9.3,1X,F7.3,1X,
     +  F7.1,1X,F8.3,1X,F8.3,1X,F7.3,1X,F6.1,1X,F8.3,1X,F8.3,1X,F7.3,
     +  1X,F7.1,1X,F8.3,1X,F9.3,1X,F7.3,1X,F9.1,1X,F9.1,1X,F9.1,1X,
     +  E9.3,1X,E9.3,1X,E9.3,1X,E9.3,1X,E10.3,1X,E9.3,1X,E9.3,1X,E9.3,
     +  1X,E9.3,1X,E10.3,1X,E9.3,1X,E9.3,1X,E9.3,1X,E9.3,1X,E10.3,1X,
     +  E9.3,1X,E10.3,1X,E9.3,1X,E10.3,1X,E9.3,1X,E10.3,1X,F5.3,1X,
     +  F7.3,1X,F7.3,1X,F6.3,1X,F7.3,1X,F7.3,1X,E9.3,1X,E10.3,1X,E9.3,
     +  1X,E10.3,1X,E9.3,1X,E10.3,1X,A8,1X,F10.6,1X,F10.6,1X,F5.2,1X,
     +  E9.3,1X,E9.3,1X,F10.6,1X,F10.6,1X,F5.3,1X,F6.3,1X,F5.3,1X,
     +  F6.3,1X,F5.3,1X,F6.3,1X,F5.3,1X,F6.3,1X,F5.3,1X,A9,1X,F12.8,
     +  1X,F12.8,1X,F5.3,1X,F7.3,1X,F5.3,1X,E10.3,1X,I1,1X,I1)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table5.dat')
      write(6,*) '....Loading file: table5.dat'
      do i__=1,498
        read(1,'(A903)')ar__1
        read(ar__1,2)
     +  Seq,NuSTAR,RAdeg_1,DEdeg_1,SFl,HFl,FFl,SdbFl,HdbFl,FdbFl,
     +  logSP,logHP,logFP,logSdbP,logHdbP,logFdbP,dbFl,Scts,e_Scts,
     +  SBck,SNet,e_SNet,Hcts,e_Hcts,HBck,HNet,e_HNet,Fcts,e_Fcts,
     +  FBck,FNet,e_FNet,Sdbcts,e_Sdbcts,SdbNet,e_SdbNet,Hdbcts,
     +  e_Hdbcts,HdbNet,e_HdbNet,Fdbcts,e_Fdbcts,FdbNet,e_FdbNet,Sexp,
     +  Hexp,Fexp,SCR,e_SCR,SCRBck,SNCR,e_SNCR,HCR,e_HCR,HCRBck,HNCR,
     +  e_HNCR,FCR,e_FCR,FCRBck,FNCR,e_FNCR,SdbNCR,e_SdbNCR,HdbNCR,
     +  e_HdbNCR,FdbNCR,e_FdbNCR,H_S,E_H_S,e_H_S_1,gamma,E_gamma,
     +  e_gamma_1,SFlux,e_SFlux,HFlux,e_HFlux,FFlux,e_FFlux,XOrig,
     +  RAXdeg,DEXdeg,XOff,XFlux,XTFlux,RAWdeg,DEWdeg,IROff,W1mag,
     +  e_W1mag,W2mag,e_W2mag,W3mag,e_W3mag,W4mag,e_W4mag,OOrig,
     +  RAOdeg,DEOdeg,OOff,Rmag,zsp,XLum,PFl,A15Fl
        if(ar__1(611:616) .EQ. '') gamma = rNULL__
        if(ar__1(618:624) .EQ. '') E_gamma = rNULL__
        if(ar__1(626:632) .EQ. '') e_gamma_1 = rNULL__
        if(ar__1(706:715) .EQ. '') RAXdeg = rNULL__
        if(ar__1(717:726) .EQ. '') DEXdeg = rNULL__
        if(ar__1(728:732) .EQ. '') XOff = rNULL__
        if(ar__1(734:742) .EQ. '') XFlux = rNULL__
        if(ar__1(744:752) .EQ. '') XTFlux = rNULL__
        if(ar__1(754:763) .EQ. '') RAWdeg = rNULL__
        if(ar__1(765:774) .EQ. '') DEWdeg = rNULL__
        if(ar__1(776:780) .EQ. '') IROff = rNULL__
        if(ar__1(782:787) .EQ. '') W1mag = rNULL__
        if(ar__1(789:793) .EQ. '') e_W1mag = rNULL__
        if(ar__1(795:800) .EQ. '') W2mag = rNULL__
        if(ar__1(802:806) .EQ. '') e_W2mag = rNULL__
        if(ar__1(808:813) .EQ. '') W3mag = rNULL__
        if(ar__1(815:819) .EQ. '') e_W3mag = rNULL__
        if(ar__1(821:826) .EQ. '') W4mag = rNULL__
        if(ar__1(828:832) .EQ. '') e_W4mag = rNULL__
        if(ar__1(844:855) .EQ. '') RAOdeg = rNULL__
        if(ar__1(857:868) .EQ. '') DEOdeg = rNULL__
        if(ar__1(870:874) .EQ. '') OOff = rNULL__
        if(ar__1(876:882) .EQ. '') Rmag = rNULL__
        if(ar__1(884:888) .EQ. '') zsp = rNULL__
        if(ar__1(890:899) .EQ. '') XLum = rNULL__
c    ..............Just test output...........
        write(6,2)
     +  Seq,NuSTAR,RAdeg_1,DEdeg_1,SFl,HFl,FFl,SdbFl,HdbFl,FdbFl,
     +  logSP,logHP,logFP,logSdbP,logHdbP,logFdbP,dbFl,Scts,e_Scts,
     +  SBck,SNet,e_SNet,Hcts,e_Hcts,HBck,HNet,e_HNet,Fcts,e_Fcts,
     +  FBck,FNet,e_FNet,Sdbcts,e_Sdbcts,SdbNet,e_SdbNet,Hdbcts,
     +  e_Hdbcts,HdbNet,e_HdbNet,Fdbcts,e_Fdbcts,FdbNet,e_FdbNet,Sexp,
     +  Hexp,Fexp,SCR,e_SCR,SCRBck,SNCR,e_SNCR,HCR,e_HCR,HCRBck,HNCR,
     +  e_HNCR,FCR,e_FCR,FCRBck,FNCR,e_FNCR,SdbNCR,e_SdbNCR,HdbNCR,
     +  e_HdbNCR,FdbNCR,e_FdbNCR,H_S,E_H_S,e_H_S_1,gamma,E_gamma,
     +  e_gamma_1,SFlux,e_SFlux,HFlux,e_HFlux,FFlux,e_FFlux,XOrig,
     +  RAXdeg,DEXdeg,XOff,XFlux,XTFlux,RAWdeg,DEWdeg,IROff,W1mag,
     +  e_W1mag,W2mag,e_W2mag,W3mag,e_W3mag,W4mag,e_W4mag,OOrig,
     +  RAOdeg,DEOdeg,OOff,Rmag,zsp,XLum,PFl,A15Fl
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table6.dat'	! Summary of the optical spectroscopy for the NuSTAR
*                              serendipitous survey sources

C  Format for file interpretation

    3 format(I3,7X,A14,1X,F5.3,1X,A7,2X,A122,1X,A68,1X,A2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table6.dat')
      write(6,*) '....Loading file: table6.dat'
      do i__=1,303
        read(1,'(A234)')ar__2
        read(ar__2,3)Seq_1,NuSTAR_1,z,Type,Lines,Notes,Run
        if(ar__2(26:30) .EQ. '') z = rNULL__
c    ..............Just test output...........
        write(6,3)Seq_1,NuSTAR_1,z,Type,Lines,Notes,Run
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table7.dat'	! The secondary NuSTAR serendipitous source catalog

C  Format for file interpretation

    4 format(
     +  I2,7X,A14,1X,F10.6,1X,F10.6,1X,F8.3,1X,F8.3,1X,F8.3,1X,F7.3,
     +  1X,F8.3,1X,F8.3,1X,F8.3,1X,F7.3,1X,F9.3,1X,F8.3,1X,F9.3,1X,
     +  F7.3,1X,F8.1,1X,F8.1,1X,F8.1,1X,E9.3,1X,E10.3,1X,E9.3,1X,
     +  E10.3,1X,E9.3,1X,E10.3,1X,E9.3,1X,E10.3,1X,E9.3,1X,E10.3,1X,
     +  E9.3,1X,E10.3,1X,A3,1X,F10.6,1X,F10.6,1X,A4,1X,F10.6,1X,F10.6,
     +  1X,F5.3,1X,E10.3,1X,A1)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table7.dat')
      write(6,*) '....Loading file: table7.dat'
      do i__=1,64
        read(1,'(A377)')ar__3
        read(ar__3,4)
     +  Seq_2,NuSTAR_2,RAdeg_2,DEdeg_2,Scts_1,SBck_1,SNet_1,e_SNet_1,
     +  Hcts_1,HBck_1,HNet_1,e_HNet_1,Fcts_1,FBck_1,FNet_1,e_FNet_1,
     +  Sexp_1,Hexp_1,Fexp_1,SNCR_1,e_SNCR_1,HNCR_1,e_HNCR_1,FNCR_1,
     +  e_FNCR_1,SFlux_1,e_SFlux_1,HFlux_1,e_HFlux_1,FFlux_1,
     +  e_FFlux_1,XName,RAXdeg_1,DEXdeg_1,OName,RAOdeg_1,DEOdeg_1,
     +  zsp_1,XLum_1,Fl
        if(ar__3(47:54) .EQ. '') Scts_1 = rNULL__
        if(ar__3(56:63) .EQ. '') SBck_1 = rNULL__
        if(ar__3(65:72) .EQ. '') SNet_1 = rNULL__
        if(ar__3(74:80) .EQ. '') e_SNet_1 = rNULL__
        if(ar__3(82:89) .EQ. '') Hcts_1 = rNULL__
        if(ar__3(91:98) .EQ. '') HBck_1 = rNULL__
        if(ar__3(100:107) .EQ. '') HNet_1 = rNULL__
        if(ar__3(109:115) .EQ. '') e_HNet_1 = rNULL__
        if(ar__3(117:125) .EQ. '') Fcts_1 = rNULL__
        if(ar__3(127:134) .EQ. '') FBck_1 = rNULL__
        if(ar__3(136:144) .EQ. '') FNet_1 = rNULL__
        if(ar__3(146:152) .EQ. '') e_FNet_1 = rNULL__
        if(ar__3(154:161) .EQ. '') Sexp_1 = rNULL__
        if(ar__3(163:170) .EQ. '') Hexp_1 = rNULL__
        if(ar__3(172:179) .EQ. '') Fexp_1 = rNULL__
        if(ar__3(181:189) .EQ. '') SNCR_1 = rNULL__
        if(ar__3(191:200) .EQ. '') e_SNCR_1 = rNULL__
        if(ar__3(202:210) .EQ. '') HNCR_1 = rNULL__
        if(ar__3(212:221) .EQ. '') e_HNCR_1 = rNULL__
        if(ar__3(223:231) .EQ. '') FNCR_1 = rNULL__
        if(ar__3(233:242) .EQ. '') e_FNCR_1 = rNULL__
        if(ar__3(244:252) .EQ. '') SFlux_1 = rNULL__
        if(ar__3(254:263) .EQ. '') e_SFlux_1 = rNULL__
        if(ar__3(265:273) .EQ. '') HFlux_1 = rNULL__
        if(ar__3(275:284) .EQ. '') e_HFlux_1 = rNULL__
        if(ar__3(286:294) .EQ. '') FFlux_1 = rNULL__
        if(ar__3(296:305) .EQ. '') e_FFlux_1 = rNULL__
        if(ar__3(311:320) .EQ. '') RAXdeg_1 = rNULL__
        if(ar__3(322:331) .EQ. '') DEXdeg_1 = rNULL__
        if(ar__3(338:347) .EQ. '') RAOdeg_1 = rNULL__
        if(ar__3(349:358) .EQ. '') DEOdeg_1 = rNULL__
        if(ar__3(360:364) .EQ. '') zsp_1 = rNULL__
        if(ar__3(366:375) .EQ. '') XLum_1 = rNULL__
c    ..............Just test output...........
        write(6,4)
     +  Seq_2,NuSTAR_2,RAdeg_2,DEdeg_2,Scts_1,SBck_1,SNet_1,e_SNet_1,
     +  Hcts_1,HBck_1,HNet_1,e_HNet_1,Fcts_1,FBck_1,FNet_1,e_FNet_1,
     +  Sexp_1,Hexp_1,Fexp_1,SNCR_1,e_SNCR_1,HNCR_1,e_HNCR_1,FNCR_1,
     +  e_FNCR_1,SFlux_1,e_SFlux_1,HFlux_1,e_HFlux_1,FFlux_1,
     +  e_FFlux_1,XName,RAXdeg_1,DEXdeg_1,OName,RAOdeg_1,DEOdeg_1,
     +  zsp_1,XLum_1,Fl
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table8.dat'	! Summary of the optical spectroscopy for
*                              the secondary catalog sources

C  Format for file interpretation

    5 format(I3,7X,A14,1X,F5.3,1X,A7,2X,A122,1X,A68,1X,A2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table8.dat')
      write(6,*) '....Loading file: table8.dat'
      do i__=1,46
        read(1,'(A234)')ar__4
        read(ar__4,5)Seq_3,NuSTAR_3,z_1,Type_1,Lines_1,Notes_1,Run_1
        if(ar__4(26:30) .EQ. '') z_1 = rNULL__
c    ..............Just test output...........
        write(6,5)Seq_3,NuSTAR_3,z_1,Type_1,Lines_1,Notes_1,Run_1
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end