FORTRAN Generation
(/./ftp/cats/J/ApJ/781/12)

Conversion of standardized ReadMe file for file /./ftp/cats/J/ApJ/781/12 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Apr-18
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/ApJ/781/12 Morphological parameters of galaxies from Spitzer (Holwerda+, 2014)
*================================================================================
*Morphological parameters of a Spitzer survey of stellar structure in galaxies.
*    Holwerda B.W., Munoz-Mateos J.-C., Comeron S., Meidt S., Sheth K.,
*    Laine S., Hinz J.L., Regan M.W., Gil de Paz A., Menendez-Delmestre K.,
*    Seibert M., Kim T., Mizusawa T., Laurikainen E., Salo H., Laine J.,
*    Gadotti D.A., Zaritsky D., Erroz-Ferrer S., Ho L.C., Knapen J.H.,
*    Athanassoula E., Bosma A., Pirzkal N.
*   <Astrophys. J., 781, 12 (2014)>
*   =2014ApJ...781...12H    (SIMBAD/NED BibCode)
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'tablea1.dat'	! The morphological parameters at 3.6{mu}m for
                                 the 2349 S^4^G galaxies

      integer*4 nr__
      parameter (nr__=2345)	! Number of records
      character*81 ar__   	! Full-size record

      character*10  Name       (nr__) ! Galaxy identifier (1)
      real*4        Gini       (nr__) ! [0/1] The Gini index (indicator of equality:
*                                 1=all the flux is in one pixel, 0=all the
*                                 pixels in the object have equal values) (2)
      real*4        e_Gini     (nr__) ! [0/10]? The uncertainty in Gini
      real*4        M20        (nr__) ! [-4.7/-0.06] Relative contribution of brightest
*                                 pixels to 2nd order moment of flux (M_20_) (3)
      real*4        e_M20      (nr__) ! [0/10] The uncertainty in M20
      real*4        C82        (nr__) ! [0/9.2] The concentration index (C_82_) (4)
      real*4        e_C82      (nr__) ! [0/1.9] The uncertainty in C82
      real*4        A          (nr__) ! [0.07/1] The asymmetry parameter (5)
      real*4        e_A        (nr__) ! [0/5]? The uncertainty in A
      real*4        S          (nr__) ! [0.04/1.7] The smoothness parameter (6)
      real*4        e_S        (nr__) ! [0/7]? The uncertainty in S
      real*4        Ell        (nr__) ! [0/1] The ellipticity parameter (7)
      real*4        e_Ell      (nr__) ! [0/0.25]? The uncertainty in Ell
      real*4        GM         (nr__) ! [0.2/1] The Gini index of 2nd order moment
*                                 (G_M_) (8)
      real*4        e_GM       (nr__) ! [0/10]? The uncertainty in GM
*Note (1): There are only 2345 objects in the tables because the code crashed
*     when calculating the parameters for 4 objects. We use the
*     concentration-asymmetry-smoothness (CAS) system from Bershady et al.
*     (2000AJ....119.2645B), Conselice et al. (2000ApJ...529..886C), and
*     Conselice 2003 (cat. J/ApJS/147/1), the Gini and M_20_ system from Lotz et
*     al. 2004 (cat. J/AJ/128/163), and a hybrid parameter G_M_, the Gini
*     parameter of the second-order moment (Holwerda et al.,
*     2011MNRAS.416.2426H).
*Note (2): The Gini parameter is an economic indicator of equality (G=1 if all
*     the flux is in one pixel and G=0 if all the pixels in the object have equal
*     values). We use the implementation from Abraham et al. 2003 (cat.
*     J/ApJ/588/218) and Lotz et al. 2004 (cat. J/AJ/128/163):
*     G = [1/<I>n(n-1)]{sum}_i_(2i-n-1)|I_i_| (Eq.(4) in the paper), where
*     I_i_ is the intensity of pixel i in an increasing flux-ordered list of the
*     n pixels in the object and <I> is the mean pixel intensity. B. W. Holwerda
*     et al. (in preparation) find a weak link between Gini and current star
*     formation.
*Note (3): The relative second-order moment of the brightest 20% of the flux:
*     M_20_ = log({sum}^k^_i_M_i_/M_tot_), for which {sum}^k^_i_I_i_<0.2I_tot_ is
*     true (Eq.(6) in the paper), where pixel K marks the top 20% point in the
*     flux-ordered pixel list. The M_20_ parameter is a parameter that is
*     sensitive to bright structure away from the center of the galaxy; the flux
*     is weighted in favor of the outer parts. It therefore is relatively
*     sensitive to tidal structures (provided of course that these are included
*     in the calculation), specifically star-forming regions formed in the outer
*     spiral or tidal arms. If no such structures are in the image, the 20%
*     brightest pixels will most likely be concentrated in the center of the
*     galaxy, which is weighted lower. Thus, one can expect low values of M_20_
*     for smooth galaxies with bright nuclei (ellipticals, S0, or Sa) but much
*     higher values (less negative) for galaxies with extended arms featuring
*     bright HII regions.
*Note (4): The log of the ratio of the radii including 80 over 20% of the flux.
*     Concentration is defined as Kent (1985ApJS...59..115K):
*     C_82_ = 5log(r_80_/r_20_) (Eq.(1) in the paper), where r_%_ is the radius
*     of the circular aperture that includes that percentage of the total light
*     of the object.
*Note (5): In an image with n pixels with intensities I(i,j) at pixel positions
*     (i,j), in which the value of the pixel is I_180_(i,j) in the image rotated
*     by 180{deg}, asymmetry is defined as (Schade et al., 1995ApJ...451L...1S;
*     Conselice 2003, cat. J/ApJS/147/1):
*     A = {sum}_i,j_|I(i,j)-I_180_(i,j)|/2{sum}_i,j_|I(i,j)| (Eq.(2) in the 
*     paper).
*Note (6): Smoothness (also called clumpiness in the original Conselice 2003,
*     cat. J/ApJS/147/1) is defined as:
*     S = {sum}_i,j_|I(i,j)-I_S_(i,j)|/{sum}_i,j_|I(i,j)| (Eq.(3) in the paper),
*     where I_S_(i,j) is the same pixel in the image after smoothing with a
*     choice of kernel.
*Note (7): Scarlata et al. (2007ApJS..172..406S) added the ellipticity of a
*     galaxy's image to the mix of parameters in order to classify galaxies
*     according to type in the COSMOS field. Ellipticity is defined as:
*     E = 1-b/a (Eq.(8) in the paper), where a and b are the major and minor axes
*     of the galaxy, respectively, computed from the spatial second-order moments
*     of the light along the x- and y-axes of the image in the same manner as
*     SExtractor. We include this definition for completeness.
*Note (8): Instead of the intensity of the pixel (I_i_), one can use the
*     second-order moment of the pixel (M_i_=I_i_[(x_i_-x_c_)^2^+(y_i_-y_c_)^2^])
*     in Eq.(4). This is the G_M_ parameter (Holwerda et al.,
*     2011MNRAS.416.2426H): G_M_ = [1/<M>n(n-1)]{sum}_i_(2i-n-1)|M_i_| (Eq.(7) in
*     the paper), which is an indication of the spread of pixel values weighted
*     with the projected radial distance to the galaxy center. In essence, this
*     is the Gini parameter with a different weighting scheme than unity for each
*     pixel. Similar to the M_20_ parameter, it emphasizes the flux from the
*     outer regions of the galaxy. If there is significant flux in the outer
*     parts, this will boost the value of G_M_. Contrary to M_20_, it does not
*     depend on a somewhat arbitrary delineation of the brightest 20% flux for
*     the denominator but relies on all pixel values. Unlike the Gini parameter,
*     however, it does rely on a supplied center of the galaxy (to compute M_i_).
*     For concentrated galaxies, the G_M_ and Gini values will be close together,
*     but as relatively more flux is evident in the outer parts of the galaxy,
*     G_M_ will be higher. Holwerda et al. 2011 (cat. J/MNRAS/416/2415) found
*     G_M_ to be a good single parameter to identify active mergers (sweeping
*     tidal tails, etc.) from atomic hydrogen maps (HI).

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'tablea2.dat'	! The morphological parameters at 4.5{mu}m for
                                 the 2349 S^4^G galaxies

      integer*4 nr__1
      parameter (nr__1=2345)	! Number of records
      character*81 ar__1  	! Full-size record

      character*10  Name_1     (nr__1) ! Galaxy identifier (1)
      real*4        Gini_1     (nr__1) ! [0/1] The Gini index (indicator of equality:
*                                 1=all the flux is in one pixel, 0=all the
*                                 pixels in the object have equal values) (2)
      real*4        e_Gini_1   (nr__1) ! [0/10]? The uncertainty in Gini
      real*4        M20_1      (nr__1) ! [-4.7/-0.06] Relative contribution of brightest
*                                 pixels to 2nd order moment of flux (M_20_) (3)
      real*4        e_M20_1    (nr__1) ! [0/10] The uncertainty in M20
      real*4        C82_1      (nr__1) ! [0/9.2] The concentration index (C_82_) (4)
      real*4        e_C82_1    (nr__1) ! [0/1.9] The uncertainty in C82
      real*4        A_1        (nr__1) ! [0.07/1] The asymmetry parameter (5)
      real*4        e_A_1      (nr__1) ! [0/5]? The uncertainty in A
      real*4        S_1        (nr__1) ! [0.04/1.7] The smoothness parameter (6)
      real*4        e_S_1      (nr__1) ! [0/7]? The uncertainty in S
      real*4        Ell_1      (nr__1) ! [0/1] The ellipticity parameter (7)
      real*4        e_Ell_1    (nr__1) ! [0/0.25]? The uncertainty in Ell
      real*4        GM_1       (nr__1) ! [0.2/1] The Gini index of 2nd order moment
*                                 (G_M_) (8)
      real*4        e_GM_1     (nr__1) ! [0/10]? The uncertainty in GM
*Note (1): There are only 2345 objects in the tables because the code crashed
*     when calculating the parameters for 4 objects. We use the
*     concentration-asymmetry-smoothness (CAS) system from Bershady et al.
*     (2000AJ....119.2645B), Conselice et al. (2000ApJ...529..886C), and
*     Conselice 2003 (cat. J/ApJS/147/1), the Gini and M_20_ system from Lotz et
*     al. 2004 (cat. J/AJ/128/163), and a hybrid parameter G_M_, the Gini
*     parameter of the second-order moment (Holwerda et al.,
*     2011MNRAS.416.2426H).
*Note (2): The Gini parameter is an economic indicator of equality (G=1 if all
*     the flux is in one pixel and G=0 if all the pixels in the object have equal
*     values). We use the implementation from Abraham et al. 2003 (cat.
*     J/ApJ/588/218) and Lotz et al. 2004 (cat. J/AJ/128/163):
*     G = [1/<I>n(n-1)]{sum}_i_(2i-n-1)|I_i_| (Eq.(4) in the paper), where
*     I_i_ is the intensity of pixel i in an increasing flux-ordered list of the
*     n pixels in the object and <I> is the mean pixel intensity. B. W. Holwerda
*     et al. (in preparation) find a weak link between Gini and current star
*     formation.
*Note (3): The relative second-order moment of the brightest 20% of the flux:
*     M_20_ = log({sum}^k^_i_M_i_/M_tot_), for which {sum}^k^_i_I_i_<0.2I_tot_ is
*     true (Eq.(6) in the paper), where pixel K marks the top 20% point in the
*     flux-ordered pixel list. The M_20_ parameter is a parameter that is
*     sensitive to bright structure away from the center of the galaxy; the flux
*     is weighted in favor of the outer parts. It therefore is relatively
*     sensitive to tidal structures (provided of course that these are included
*     in the calculation), specifically star-forming regions formed in the outer
*     spiral or tidal arms. If no such structures are in the image, the 20%
*     brightest pixels will most likely be concentrated in the center of the
*     galaxy, which is weighted lower. Thus, one can expect low values of M_20_
*     for smooth galaxies with bright nuclei (ellipticals, S0, or Sa) but much
*     higher values (less negative) for galaxies with extended arms featuring
*     bright HII regions.
*Note (4): The log of the ratio of the radii including 80 over 20% of the flux.
*     Concentration is defined as Kent (1985ApJS...59..115K):
*     C_82_ = 5log(r_80_/r_20_) (Eq.(1) in the paper), where r_%_ is the radius
*     of the circular aperture that includes that percentage of the total light
*     of the object.
*Note (5): In an image with n pixels with intensities I(i,j) at pixel positions
*     (i,j), in which the value of the pixel is I_180_(i,j) in the image rotated
*     by 180{deg}, asymmetry is defined as (Schade et al., 1995ApJ...451L...1S;
*     Conselice 2003, cat. J/ApJS/147/1):
*     A = {sum}_i,j_|I(i,j)-I_180_(i,j)|/2{sum}_i,j_|I(i,j)| (Eq.(2) in the 
*     paper).
*Note (6): Smoothness (also called clumpiness in the original Conselice 2003,
*     cat. J/ApJS/147/1) is defined as:
*     S = {sum}_i,j_|I(i,j)-I_S_(i,j)|/{sum}_i,j_|I(i,j)| (Eq.(3) in the paper),
*     where I_S_(i,j) is the same pixel in the image after smoothing with a
*     choice of kernel.
*Note (7): Scarlata et al. (2007ApJS..172..406S) added the ellipticity of a
*     galaxy's image to the mix of parameters in order to classify galaxies
*     according to type in the COSMOS field. Ellipticity is defined as:
*     E = 1-b/a (Eq.(8) in the paper), where a and b are the major and minor axes
*     of the galaxy, respectively, computed from the spatial second-order moments
*     of the light along the x- and y-axes of the image in the same manner as
*     SExtractor. We include this definition for completeness.
*Note (8): Instead of the intensity of the pixel (I_i_), one can use the
*     second-order moment of the pixel (M_i_=I_i_[(x_i_-x_c_)^2^+(y_i_-y_c_)^2^])
*     in Eq.(4). This is the G_M_ parameter (Holwerda et al.,
*     2011MNRAS.416.2426H): G_M_ = [1/<M>n(n-1)]{sum}_i_(2i-n-1)|M_i_| (Eq.(7) in
*     the paper), which is an indication of the spread of pixel values weighted
*     with the projected radial distance to the galaxy center. In essence, this
*     is the Gini parameter with a different weighting scheme than unity for each
*     pixel. Similar to the M_20_ parameter, it emphasizes the flux from the
*     outer regions of the galaxy. If there is significant flux in the outer
*     parts, this will boost the value of G_M_. Contrary to M_20_, it does not
*     depend on a somewhat arbitrary delineation of the brightest 20% flux for
*     the denominator but relies on all pixel values. Unlike the Gini parameter,
*     however, it does rely on a supplied center of the galaxy (to compute M_i_).
*     For concentrated galaxies, the G_M_ and Gini values will be close together,
*     but as relatively more flux is evident in the outer parts of the galaxy,
*     G_M_ will be higher. Holwerda et al. 2011 (cat. J/MNRAS/416/2415) found
*     G_M_ to be a good single parameter to identify active mergers (sweeping
*     tidal tails, etc.) from atomic hydrogen maps (HI).

C=============================================================================

C  Loading file 'tablea1.dat'	! The morphological parameters at 3.6{mu}m for
*                                 the 2349 S^4^G galaxies

C  Format for file interpretation

    1 format(
     +  A10,1X,F4.2,1X,F4.2,1X,F5.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,
     +  1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'tablea1.dat')
      write(6,*) '....Loading file: tablea1.dat'
      do i__=1,2345
        read(1,'(A81)')ar__
        read(ar__,1)
     +  Name(i__),Gini(i__),e_Gini(i__),M20(i__),e_M20(i__),C82(i__),
     +  e_C82(i__),A(i__),e_A(i__),S(i__),e_S(i__),Ell(i__),
     +  e_Ell(i__),GM(i__),e_GM(i__)
        if(ar__(17:20) .EQ. '') e_Gini(i__) = rNULL__
        if(ar__(48:51) .EQ. '') e_A(i__) = rNULL__
        if(ar__(58:61) .EQ. '') e_S(i__) = rNULL__
        if(ar__(68:71) .EQ. '') e_Ell(i__) = rNULL__
        if(ar__(78:81) .EQ. '') e_GM(i__) = rNULL__
c    ..............Just test output...........
        write(6,1)
     +  Name(i__),Gini(i__),e_Gini(i__),M20(i__),e_M20(i__),C82(i__),
     +  e_C82(i__),A(i__),e_A(i__),S(i__),e_S(i__),Ell(i__),
     +  e_Ell(i__),GM(i__),e_GM(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'tablea2.dat'	! The morphological parameters at 4.5{mu}m for
*                                 the 2349 S^4^G galaxies

C  Format for file interpretation

    2 format(
     +  A10,1X,F4.2,1X,F4.2,1X,F5.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,
     +  1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2,1X,F4.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'tablea2.dat')
      write(6,*) '....Loading file: tablea2.dat'
      do i__=1,2345
        read(1,'(A81)')ar__1
        read(ar__1,2)
     +  Name_1(i__),Gini_1(i__),e_Gini_1(i__),M20_1(i__),e_M20_1(i__),
     +  C82_1(i__),e_C82_1(i__),A_1(i__),e_A_1(i__),S_1(i__),
     +  e_S_1(i__),Ell_1(i__),e_Ell_1(i__),GM_1(i__),e_GM_1(i__)
        if(ar__1(17:20) .EQ. '') e_Gini_1(i__) = rNULL__
        if(ar__1(48:51) .EQ. '') e_A_1(i__) = rNULL__
        if(ar__1(58:61) .EQ. '') e_S_1(i__) = rNULL__
        if(ar__1(68:71) .EQ. '') e_Ell_1(i__) = rNULL__
        if(ar__1(78:81) .EQ. '') e_GM_1(i__) = rNULL__
c    ..............Just test output...........
        write(6,2)
     +  Name_1(i__),Gini_1(i__),e_Gini_1(i__),M20_1(i__),e_M20_1(i__),
     +  C82_1(i__),e_C82_1(i__),A_1(i__),e_A_1(i__),S_1(i__),
     +  e_S_1(i__),Ell_1(i__),e_Ell_1(i__),GM_1(i__),e_GM_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end