FORTRAN Generation
(/./ftp/cats/J/AJ/153/240)

Conversion of standardized ReadMe file for file /./ftp/cats/J/AJ/153/240 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Mar-28
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/AJ/153/240  ALMA survey of protoplanetary disks in sigma Ori  (Ansdell+, 2017)
*================================================================================
*An ALMA survey of protoplanetary disks in the {sigma} Orionis cluster.
*    Ansdell M., Williams J.P., Manara C.F., Miotello A., Facchini S.,
*    van der Marel N., Testi L., van Dishoeck E.F.
*   <Astron. J., 153, 240-240 (2017)>
*   =2017AJ....153..240A    (SIMBAD/NED BibCode)
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table1.dat'	! Continuum properties

      integer*4 nr__
      parameter (nr__=92)	! Number of records
      character*80 ar__   	! Full-size record

C  J2000 position composed of: RAh RAm RAs DE- DEd DEm DEs
      real*8        RAdeg      (nr__) ! (deg) Right Ascension J2000
      real*8        DEdeg      (nr__) ! (deg)     Declination J2000
C  ---------------------------------- ! (position vector(s) in degrees)

      integer*4     v_HHM2007_ (nr__) ! [73/1369] Source identification number (G1)
      integer*4     RAh        (nr__) ! (h) Hour of Right Ascension (J2000) (1)
      integer*4     RAm        (nr__) ! (min) Minute of Right Ascension (J2000) (1)
      real*4        RAs        (nr__) ! (s) Second of Right Ascension (J2000) (1)
      character*1   DE_        (nr__) ! Sign of the Declination (J2000) (1)
      integer*4     DEd        (nr__) ! (deg) Degree of Declination (J2000) (1)
      integer*4     DEm        (nr__) ! (arcmin) Arcminute of Declination (J2000) (1)
      real*4        DEs        (nr__) ! (arcsec) Arcsecond of Declination (J2000) (1)
      character*4   SpT        (nr__) ! Spectral type (2)
      real*4        e_SpT      (nr__) ! Uncertainty in SpT
      character*3   r_SpT      (nr__) ! Reference for SpT (H14, R12, or VJ) (3)
      real*4        Mass       (nr__) ! (Msun) [0.04/1.71] Stellar mass (M_*_) (4)
      real*4        e_Mass     (nr__) ! (Msun) [0.01/0.32] Uncertainty in Mass (4)
      real*4        F1_33      (nr__) ! (mJy) [-0.27/15.38] Atacama Large Millimeter/sub-
*                                    millimeter Array (ALMA) 1.33mm (225.676GHz)
*                                    continuum emission flux density (F_1.33mm_)
      real*4        e_F1_33    (nr__) ! (mJy) [0.13/0.25] Uncertainty in F1.33 (5)
      real*4        rms        (nr__) ! (mJy/beam) [0.13/0.18] Root-mean-square
      real*4        Mdust      (nr__) ! (Mgeo) [-1.2/68.48] Dust mass (M_dust_) (6)
      real*4        e_Mdust    (nr__) ! (Mgeo) [0.57/1.12] Uncertainty in Mdust
*Note (1): We detect only 37 out of the 92 observed sources at >3{sigma}
*     significance (Figure2 in the paper). For detections, the source locations
*     are the fitted source centers output by uvmodelfit, while for
*     non-detections they are simply the phase centers of the Atacama Large
*     Millimeter/sub-millimeter Array (ALMA) observations, which were chosen
*     based on 2MASS positions. The average offsets from the phase centers for
*     the detections are {Delta}{alpha}=0.057'' and {Delta}{delta}=-0.096'' (1.9
*     and -3.2 pixels), both much smaller than the average beam size (Section 3
*     in the paper).
*Note (2): Spectral types were primarily taken from the homogenous sample of
*     low-resolution optical spectra analyzed in Hernandez et al. 2014
*     (Cat. J/ApJ/794/36), but supplemented with those from medium-resolution
*     VLT/X-Shooter spectra when available from Rigliaco et al. 2012
*     (Cat. J/A+A/548/A56). For the 23 sources that lack spectroscopic
*     information, we estimate their spectral types using an empirical relation
*     between V-J color and stellar spectral type; the relation was derived by
*     measuring synthetic photometry from flux-calibrated VLT/X-Shooter spectra
*     of Young Stellar Objects (YSOs) with spectral types from G5 to M9.5, then
*     performing a non-parametric fit of the V-J color versus spectral type
*     relation (Manara et al. 2017, in prep.). For these sources with
*     photometrically derived spectral types, we cautiously assume uncertainties
*     of +/-2 spectral subtypes. We note that only 5 out of the 37 continuum
*     detections have photometrically derived spectral types, which are less
*     precise than the spectroscopically determined spectral types (Section 2).
*Note (3): Reference codes are defined as follows:
*     H14 = Hernandez et al. 2014 (Cat. J/ApJ/794/36);
*     R12 = Rigliaco et al. 2012 (Cat. J/A+A/548/A56);
*      VJ = derived from V-J color indices (see Section 2).
*Note (4): We estimate M_*_ values for our sample by comparing their positions on
*     the Hertzsprung-Russel (HR) diagram to the evolutionary models of Siess et
*     al. 2000A&A...358..593S. In order to place our targets on the HR diagram,
*     we convert their spectral types to stellar effective temperatures (T_eff_)
*     and derive their stellar luminosities (L_*_) from J-band magnitudes using
*     the relations in Herczeg & Hillenbrand 2015ApJ...808...23H. The
*     uncertainties on L_*_ are obtained by propagating the uncertainties on
*     spectral type and bolometric correction, and thus on distance and optical
*     extinction (A_V_). We then calculate the uncertainties on M_*_ using a
*     Monte Carlo (MC) method, where we take the standard deviation of 1000
*     estimates of M_*_, each calculated after randomly perturbing the derived
*     values of T_eff_ and L_*_ by their uncertainties.
*Note (5): The uncertainties are statistical errors and do not include the 10%
*     absolute flux calibration error (Section 3 in the paper).
*Note (6):
*     Our M_dust_ estimates, derived using Equation (1) with our F_1.33mm_
*     measurements (Section 4.1):
*     M_dust_=F_{nu}_d^2^/K_{nu}_B_{nu}_(T_dust_), where:
*     B_{nu}_(T_dust_) = The Planck function for a characteristic dust
*                        temperature of T_dust_=20K (the median for Taurus disks;
*                        Andrews & Williams 2005ApJ...631.1134A);
*              K_{nu}_ = The dust grain opacity. We take K_{nu}_ as 10cm^2^/g at
*                        1000GHz and use an opacity power-law index of {beta}=1
*                        (Beckwith et al. 1990AJ.....99..924B);
*                    d = The source distance, taken as 385pc based on the
*                        updated parallax of the {sigma} Ori triple system
*                        (Schaefer et al. 2016, Cat. J/AJ/152/213).
*
*     Equation (1) can therefore be approximated as:
*     M_dust_{simeq}1.34*10^-5^F_1.33mm_,
*     where F_1.33mm_ is in mJy and M_dust_ is in M_{Sun}_.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table2.dat'	! Gas properties

      integer*4 nr__1
      parameter (nr__1=92)	! Number of records
      character*38 ar__1  	! Full-size record

      integer*4     v_HHM2007__1(nr__1) ! [73/1369] Source identification number (G1)
      character*1   l_F12CO    (nr__1) ! [<] Upper limit flag on FC12O
      integer*4     F12CO      (nr__1) ! (mJy.km/s) [63/1204] The ^12^CO (230.538GHz) line
*                                    intensity (F_12CO_) (7)
      integer*4     e_F12CO    (nr__1) ! (mJy.km/s) [33/88]? Uncertainty in F12CO (7)
      character*1   l_F13CO    (nr__1) ! [<] Upper limit flag on F13CO
      integer*4     F13CO      (nr__1) ! (mJy.km/s) [72/326] The ^13^CO (220.399 GHz) line
*                                    intensity (F_13CO_) (7)
      integer*4     e_F13CO    (nr__1) ! (mJy.km/s) [54/68]? Uncertainty in F13CO (7)
      character*1   l_FC18O    (nr__1) ! [<] Upper limit flag on FC18O
      integer*4     FC18O      (nr__1) ! (mJy.km/s) [48/81] The C^18^O (219.560GHz) line
*                                    intensity (F_C18O_) (7)
      real*4        Mgas       (nr__1) ! (MJup) [2.4/7.1]? Gas mass (M_gas_)
      real*4        b_Mgas     (nr__1) ! (MJup) [1/1]? Lower boundary (minimum mass) of Mgas
*                                    (M_gas,min_)
      real*4        B_Mgas_1   (nr__1) ! (MJup) [1/31.4] Upper boundary (maximum mass) of
*                                    Mgas (M_gas,max_)
*Note (7): Of the 92 targets, only 6 are detected in ^12^CO, 3 are detected in
*     ^13^CO, and none are detected in C^18^O with >4{sigma} significance. All
*     sources detected in ^12^CO are detected in the continuum, and all sources
*     detected in ^13^CO are detected in ^12^CO.

C=============================================================================

C  Loading file 'table1.dat'	! Continuum properties

C  Format for file interpretation

    1 format(
     +  I4,1X,I2,1X,I2,1X,F6.3,1X,A1,I2,1X,I2,1X,F5.2,1X,A4,1X,F3.1,
     +  1X,A3,1X,F4.2,1X,F4.2,1X,F5.2,1X,F4.2,1X,F4.2,1X,F5.2,1X,F4.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table1.dat')
      write(6,*) '....Loading file: table1.dat'
      do i__=1,92
        read(1,'(A80)')ar__
        read(ar__,1)
     +  v_HHM2007_(i__),RAh(i__),RAm(i__),RAs(i__),DE_(i__),DEd(i__),
     +  DEm(i__),DEs(i__),SpT(i__),e_SpT(i__),r_SpT(i__),Mass(i__),
     +  e_Mass(i__),F1_33(i__),e_F1_33(i__),rms(i__),Mdust(i__),
     +  e_Mdust(i__)
        RAdeg(i__) = rNULL__
        DEdeg(i__) = rNULL__
c  Derive coordinates RAdeg and DEdeg from input data
c  (RAdeg and DEdeg are set to rNULL__ when unknown)
        if(RAh(i__) .GT. -180) RAdeg(i__)=RAh(i__)*15.
        if(RAm(i__) .GT. -180) RAdeg(i__)=RAdeg(i__)+RAm(i__)/4.
        if(RAs(i__) .GT. -180) RAdeg(i__)=RAdeg(i__)+RAs(i__)/240.
        if(DEd(i__) .GE. 0) DEdeg(i__)=DEd(i__)
        if(DEm(i__) .GE. 0) DEdeg(i__)=DEdeg(i__)+DEm(i__)/60.
        if(DEs(i__) .GE. 0) DEdeg(i__)=DEdeg(i__)+DEs(i__)/3600.
        if(DE_(i__).EQ.'-'.AND.DEdeg(i__).GE.0) DEdeg(i__)=-DEdeg(i__)
c    ..............Just test output...........
        write(6,1)
     +  v_HHM2007_(i__),RAh(i__),RAm(i__),RAs(i__),DE_(i__),DEd(i__),
     +  DEm(i__),DEs(i__),SpT(i__),e_SpT(i__),r_SpT(i__),Mass(i__),
     +  e_Mass(i__),F1_33(i__),e_F1_33(i__),rms(i__),Mdust(i__),
     +  e_Mdust(i__)
        write(6,'(6H Pos: 2F8.4)') RAdeg(i__),DEdeg(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table2.dat'	! Gas properties

C  Format for file interpretation

    2 format(
     +  I4,1X,A1,I4,1X,I2,1X,A1,I3,1X,I2,1X,A1,I2,1X,F3.1,1X,F3.1,1X,
     +  F4.1)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table2.dat')
      write(6,*) '....Loading file: table2.dat'
      do i__=1,92
        read(1,'(A38)')ar__1
        read(ar__1,2)
     +  v_HHM2007__1(i__),l_F12CO(i__),F12CO(i__),e_F12CO(i__),
     +  l_F13CO(i__),F13CO(i__),e_F13CO(i__),l_FC18O(i__),FC18O(i__),
     +  Mgas(i__),b_Mgas(i__),B_Mgas_1(i__)
        if(ar__1(12:13) .EQ. '') e_F12CO(i__) = iNULL__
        if(ar__1(20:21) .EQ. '') e_F13CO(i__) = iNULL__
        if(ar__1(27:29) .EQ. '') Mgas(i__) = rNULL__
        if(ar__1(31:33) .EQ. '') b_Mgas(i__) = rNULL__
c    ..............Just test output...........
        write(6,2)
     +  v_HHM2007__1(i__),l_F12CO(i__),F12CO(i__),e_F12CO(i__),
     +  l_F13CO(i__),F13CO(i__),e_F13CO(i__),l_FC18O(i__),FC18O(i__),
     +  Mgas(i__),b_Mgas(i__),B_Mgas_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end