FORTRAN Generation
(/./ftp/cats/J/A_AS/103/67)

Conversion of standardized ReadMe file for file /./ftp/cats/J/A_AS/103/67 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Apr-18
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/A+AS/103/67     Evolutionary sequences with MC metallicities  (de Loore+ 1994)
*================================================================================
*Evolutionary sequences for massive close binary stars with Magellanic Cloud
*metallicities with Rogers-Iglesias opacities
*     de Loore C., Vanbeveren D.
*    <Astron. Astrophys. Suppl. Ser. 103, 67 (1994)>
*    =1994A&AS..103...67D
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'lmc.dat'	! LMC abundances (Table3 to Table15)

      integer*4 nr__
      parameter (nr__=181)	! Number of records
      character*175 ar__   	! Full-size record

      integer*4     IM1        (nr__) ! (Sun) Initial mass of the primary
      real*4        IM2        (nr__) ! (Sun) Initial mass of the secondary
      character*10  Phase      (nr__) ! See note (1)
      real*4        Age        (nr__) ! (yr) Evolutionary stage
      real*4        M1         (nr__) ! (solMass) Mass of the primary
      real*4        ML1        (nr__) ! (solMass/yr) Mass loss rate of the primary
      real*4        logTeff1   (nr__) ! ([K]) Effective temperature of the primary
      real*4        logL1      (nr__) ! ([solLum]) Luminosity of the primary
      real*4        XC1        (nr__) ! Central hydrogen content of the primary
      real*4        YC1        (nr__) ! Central helium content of the primary
      real*4        XAT1       (nr__) ! Surface hydrogen abundance of the primary
      real*4        Rad1       (nr__) ! (solRad) Radius of the primary
      real*4        MCC1       (nr__) ! (Sun) Convective core mass of the primary
      real*8        Period     (nr__) ! (d) ? Orbital period
      real*4        M2         (nr__) ! (solMass) ? Mass of the secondary
      real*4        ML2        (nr__) ! (solMass/yr) ? Mass loss rate of the secondary
      real*4        logTeff2   (nr__) ! ([K]) ? Effective temperature of the secondary
      real*4        logL2      (nr__) ! ([solLum]) ? Luminosity of the secondary
      real*4        XC2        (nr__) ! ? Central hydrogen content of the secondary
      real*4        YC2        (nr__) ! ? Central helium content of the secondary
      real*4        XAT2       (nr__) ! ? Surface hydrogen content of the secondary
      real*4        Rad2       (nr__) ! (solRad) ? Radius of the secondary
      real*4        MCC2       (nr__) ! (solMass) ? Convective core mass of the secondary
*Note (1): The different phases is as follows:
*      ZAMS: Zero Age Main Sequence
*       RP1: Red Point of the primary component
*     Xc1=0: end of core hydrogen burning of the primary
*     RLOFi: onset of a case B of Roche Lobe Overflow
*      Lmin: minimum luminosity of the primary
*    Xat<0.76 (SMC, or 0.74 (LMC)): hydrogen abundance of the primary drops
*            below its initial value
*    CHeB1i: onset of core helium burning of the primary
*    VHeB1i: onset of core helium burning of the primary
*     RLOFf: end of Roche Lobe Overflow
*     Yc1=0: end of core helium burning of the primary
*       RP2: red point of the secondary
*     Xc2=0: end core hydrogen burning of the secondary.
*    Teffmin2: minimum of the effective temperature of the secondary
*    Teffmax2: maximum of the effective temperature of the secondary
*   WNL1,WNE1, WC1 denote the onset of the different Wolf-Rayet phases,
*            the WNL,WNE and WC-phases of the primary.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'smc.dat'	! SMC abundances (Table16 to Table29)

      integer*4 nr__1
      parameter (nr__1=176)	! Number of records
      character*175 ar__1  	! Full-size record

      integer*4     IM1_1      (nr__1) ! (Sun) Initial mass of the primary
      real*4        IM2_1      (nr__1) ! (Sun) Initial mass of the secondary
      character*10  Phase_1    (nr__1) ! See note (1)
      real*4        Age_1      (nr__1) ! (yr) Evolutionary stage
      real*4        M1_1       (nr__1) ! (solMass) Mass of the primary
      real*4        ML1_1      (nr__1) ! (solMass/yr) Mass loss rate of the primary
      real*4        logTeff1_1 (nr__1) ! ([K]) Effective temperature of the primary
      real*4        logL1_1    (nr__1) ! ([solLum]) Luminosity of the primary
      real*4        XC1_1      (nr__1) ! Central hydrogen content of the primary
      real*4        YC1_1      (nr__1) ! Central helium content of the primary
      real*4        XAT1_1     (nr__1) ! Surface hydrogen abundance of the primary
      real*4        Rad1_1     (nr__1) ! (solRad) Radius of the primary
      real*4        MCC1_1     (nr__1) ! (Sun) Convective core mass of the primary
      real*8        Period_1   (nr__1) ! (d) ? Orbital period
      real*4        M2_1       (nr__1) ! (solMass) ? Mass of the secondary
      real*4        ML2_1      (nr__1) ! (solMass/yr) ? Mass loss rate of the secondary
      real*4        logTeff2_1 (nr__1) ! ([K]) ? Effective temperature of the secondary
      real*4        logL2_1    (nr__1) ! ([solLum]) ? Luminosity of the secondary
      real*4        XC2_1      (nr__1) ! ? Central hydrogen content of the secondary
      real*4        YC2_1      (nr__1) ! ? Central helium content of the secondary
      real*4        XAT2_1     (nr__1) ! ? Surface hydrogen content of the secondary
      real*4        Rad2_1     (nr__1) ! (solRad) ? Radius of the secondary
      real*4        MCC2_1     (nr__1) ! (solMass) ? Convective core mass of the secondary
*Note (1): The different phases is as follows:
*      ZAMS: Zero Age Main Sequence
*       RP1: Red Point of the primary component
*     Xc1=0: end of core hydrogen burning of the primary
*     RLOFi: onset of a case B of Roche Lobe Overflow
*      Lmin: minimum luminosity of the primary
*    Xat<0.76 (SMC, or 0.74 (LMC)): hydrogen abundance of the primary drops
*            below its initial value
*    CHeB1i: onset of core helium burning of the primary
*    VHeB1i: onset of core helium burning of the primary
*     RLOFf: end of Roche Lobe Overflow
*     Yc1=0: end of core helium burning of the primary
*       RP2: red point of the secondary
*     Xc2=0: end core hydrogen burning of the secondary.
*    Teffmin2: minimum of the effective temperature of the secondary
*    Teffmax2: maximum of the effective temperature of the secondary
*   WNL1,WNE1, WC1 denote the onset of the different Wolf-Rayet phases,
*            the WNL,WNE and WC-phases of the primary.

C=============================================================================

C  Loading file 'lmc.dat'	! LMC abundances (Table3 to Table15)

C  Format for file interpretation

    1 format(
     +  I2,1X,F4.1,A10,1X,E12.6,1X,F5.2,2X,E11.4,3X,F5.3,3X,F5.3,1X,
     +  F5.3,1X,F5.3,1X,F5.3,3X,F5.2,2X,F5.2,1X,F8.4,F6.2,1X,E11.4,3X,
     +  F5.3,3X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,3X,F5.2,3X,F5.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'lmc.dat')
      write(6,*) '....Loading file: lmc.dat'
      do i__=1,181
        read(1,'(A175)')ar__
        read(ar__,1)
     +  IM1(i__),IM2(i__),Phase(i__),Age(i__),M1(i__),ML1(i__),
     +  logTeff1(i__),logL1(i__),XC1(i__),YC1(i__),XAT1(i__),
     +  Rad1(i__),MCC1(i__),Period(i__),M2(i__),ML2(i__),
     +  logTeff2(i__),logL2(i__),XC2(i__),YC2(i__),XAT2(i__),
     +  Rad2(i__),MCC2(i__)
        if(ar__(100:107) .EQ. '') Period(i__) = rNULL__
        if(ar__(108:113) .EQ. '') M2(i__) = rNULL__
        if(ar__(115:125) .EQ. '') ML2(i__) = rNULL__
        if(ar__(129:133) .EQ. '') logTeff2(i__) = rNULL__
        if(ar__(137:141) .EQ. '') logL2(i__) = rNULL__
        if(ar__(143:147) .EQ. '') XC2(i__) = rNULL__
        if(ar__(149:153) .EQ. '') YC2(i__) = rNULL__
        if(ar__(155:159) .EQ. '') XAT2(i__) = rNULL__
        if(ar__(163:167) .EQ. '') Rad2(i__) = rNULL__
        if(ar__(171:175) .EQ. '') MCC2(i__) = rNULL__
c    ..............Just test output...........
        write(6,1)
     +  IM1(i__),IM2(i__),Phase(i__),Age(i__),M1(i__),ML1(i__),
     +  logTeff1(i__),logL1(i__),XC1(i__),YC1(i__),XAT1(i__),
     +  Rad1(i__),MCC1(i__),Period(i__),M2(i__),ML2(i__),
     +  logTeff2(i__),logL2(i__),XC2(i__),YC2(i__),XAT2(i__),
     +  Rad2(i__),MCC2(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'smc.dat'	! SMC abundances (Table16 to Table29)

C  Format for file interpretation

    2 format(
     +  I2,1X,F4.1,A10,1X,E12.6,1X,F5.2,2X,E11.4,3X,F5.3,3X,F5.3,1X,
     +  F5.3,1X,F5.3,1X,F5.3,3X,F5.2,2X,F5.2,1X,F8.4,F6.2,1X,E11.4,3X,
     +  F5.3,3X,F5.3,1X,F5.3,1X,F5.3,1X,F5.3,3X,F5.2,3X,F5.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'smc.dat')
      write(6,*) '....Loading file: smc.dat'
      do i__=1,176
        read(1,'(A175)')ar__1
        read(ar__1,2)
     +  IM1_1(i__),IM2_1(i__),Phase_1(i__),Age_1(i__),M1_1(i__),
     +  ML1_1(i__),logTeff1_1(i__),logL1_1(i__),XC1_1(i__),YC1_1(i__),
     +  XAT1_1(i__),Rad1_1(i__),MCC1_1(i__),Period_1(i__),M2_1(i__),
     +  ML2_1(i__),logTeff2_1(i__),logL2_1(i__),XC2_1(i__),YC2_1(i__),
     +  XAT2_1(i__),Rad2_1(i__),MCC2_1(i__)
        if(ar__1(100:107) .EQ. '') Period_1(i__) = rNULL__
        if(ar__1(108:113) .EQ. '') M2_1(i__) = rNULL__
        if(ar__1(115:125) .EQ. '') ML2_1(i__) = rNULL__
        if(ar__1(129:133) .EQ. '') logTeff2_1(i__) = rNULL__
        if(ar__1(137:141) .EQ. '') logL2_1(i__) = rNULL__
        if(ar__1(143:147) .EQ. '') XC2_1(i__) = rNULL__
        if(ar__1(149:153) .EQ. '') YC2_1(i__) = rNULL__
        if(ar__1(155:159) .EQ. '') XAT2_1(i__) = rNULL__
        if(ar__1(163:167) .EQ. '') Rad2_1(i__) = rNULL__
        if(ar__1(171:175) .EQ. '') MCC2_1(i__) = rNULL__
c    ..............Just test output...........
        write(6,2)
     +  IM1_1(i__),IM2_1(i__),Phase_1(i__),Age_1(i__),M1_1(i__),
     +  ML1_1(i__),logTeff1_1(i__),logL1_1(i__),XC1_1(i__),YC1_1(i__),
     +  XAT1_1(i__),Rad1_1(i__),MCC1_1(i__),Period_1(i__),M2_1(i__),
     +  ML2_1(i__),logTeff2_1(i__),logL2_1(i__),XC2_1(i__),YC2_1(i__),
     +  XAT2_1(i__),Rad2_1(i__),MCC2_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end