FORTRAN Generation
(/./ftp/cats/J/A_A/535/A117)

Conversion of standardized ReadMe file for file /./ftp/cats/J/A_A/535/A117 into FORTRAN code for loading all data files into arrays.

Note that special values are assigned to unknown or unspecified numbers (also called NULL numbers); when necessary, the coordinate components making up the right ascension and declination are converted into floating-point numbers representing these angles in degrees.



      program load_ReadMe
C=============================================================================
C  F77-compliant program generated by readme2f_1.81 (2015-09-23), on 2024-Apr-19
C=============================================================================
*  This code was generated from the ReadMe file documenting a catalogue
*  according to the "Standard for Documentation of Astronomical Catalogues"
*  currently in use by the Astronomical Data Centers (CDS, ADC, A&A)
*  (see full documentation at URL http://vizier.u-strasbg.fr/doc/catstd.htx)
*  Please report problems or questions to   
C=============================================================================

      implicit none
*  Unspecified or NULL values, generally corresponding to blank columns,
*  are assigned one of the following special values:
*     rNULL__    for unknown or NULL floating-point values
*     iNULL__    for unknown or NULL   integer      values
      real*4     rNULL__
      integer*4  iNULL__
      parameter  (rNULL__=--2147483648.)  	! NULL real number
      parameter  (iNULL__=(-2147483647-1))	! NULL int  number
      integer    idig			! testing NULL number

C=============================================================================
Cat. J/A+A/535/A117    Low-charge ions charge transfer rate coeff.  (Sterling+, 2011)
*================================================================================
*Atomic data for neutron-capture elements.
*III. Charge transfer rate coefficients for low-charge ions of Ge, Se, Br, Kr,
*Rb, and Xe.
*    Sterling N.C., Stancil P.C.
*   <Astron. Astrophys. 535, A117 (2011)>
*   =2011A&A...535A.117S
C=============================================================================

C  Internal variables

      integer*4 i__

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table4.dat'	! Final-state resolved charge transfer recombination
                             rate coefficients (cm^3^/s) for the reactions
                             X^q+^+H --> X^(q-1)+^+H^+^+{delta}E

      integer*4 nr__
      parameter (nr__=159)	! Number of records
      character*212 ar__   	! Full-size record

      character*2   El         (nr__) ! Projectile element (Ge Se Br Kr Rb Xe)
      integer*4     ion        (nr__) ! [0/5] Ionisation state
      character*24  ExitC      (nr__) ! Exit channel
      real*4        a_0_1      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=100K  (1)
      real*4        a_0_2      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=200K  (1)
      real*4        a_0_4      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=400K  (1)
      real*4        a_0_6      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=600K  (1)
      real*4        a_0_8      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=800K  (1)
      real*4        a_1_0      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=1000K (1)
      real*4        a_1_2      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=2000K (1)
      real*4        a_1_4      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=4000K (1)
      real*4        a_1_6      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=6000K (1)
      real*4        a_1_8      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=8000K (1)
      real*4        a_10_      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=10kK  (1)
      real*4        a_20_      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=20kK  (1)
      real*4        a_40_      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=40kK  (1)
      real*4        a_60_      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=60kK  (1)
      real*4        a_80_      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=80kK  (1)
      real*4        a_100      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=100kK (1)
      real*4        a_200      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=200kK (1)
      real*4        a_400      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=400kK (1)
      real*4        a_600      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=600kK (1)
      real*4        a_800      (nr__) ! (cm3/s) Rate coefficient {alpha} over T=800kK (1)
*Note (1):
* * For table4.dat: Each listed rate coefficient is the largest of the
*   radially-coupled CT rate coefficient from our MCLZ and Demkov calculations
*   and the canonical radiative CT rate coefficient 10^-14^cm^3^/s (Butler et al.
*   1977, Phys. Rev. A, 16, 500; Stancil & Zygelman 1996ApJ...472..102S).
*   Note that radiative CT does not occur for endoergic reactions.
* * For table5.dat: For Ge, Se, and Br, the spin-orbit coupling rate
*   coefficient found for Cl^+^, 10^-12^cm^3^/s (Pradhan & Dalgarno, 1994,
*   Phys. Rev. A, 49, 960), is adopted as an upper limit when the rate from
*   radial coupling falls below that value. In the case of Se and Br, the SO rate
*   coefficient is adopted only for the dominant exit channels for SO coupling.
*   For CT reactions involving neutral Kr, Rb, and Xe, SO coupling is not
*   relevant and hence we set the rate coefficient to the canonical radiative CT
*   rate 10^-14^cm^3^/s (Butler et al.  1977, Phys. Rev. A, 16, 500) when the
*   radial coupling rate coefficient is smaller than that value.
*   Note that radiative CT does not occur for the endoergic reaction
*     Kr^0^+H^+^ --> Kr^+^+H+{delta}E.

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

C  Declarations for 'table5.dat'	! Final-state resolved charge transfer ionization
                             rate coefficients (cm^3^/s) for the reactions
                             X^0^+H^+^ --> X^+^+H+{delta}E

      integer*4 nr__1
      parameter (nr__1=9)	! Number of records
      character*212 ar__1  	! Full-size record

      character*2   El_1       (nr__1) ! Projectile element (Ge Se Br Kr Rb Xe)
      integer*4     ion_1      (nr__1) ! [0/5] Ionisation state
      character*24  ExitC_1    (nr__1) ! Exit channel
      real*4        a_0_1_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=100K  (1)
      real*4        a_0_2_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=200K  (1)
      real*4        a_0_4_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=400K  (1)
      real*4        a_0_6_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=600K  (1)
      real*4        a_0_8_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=800K  (1)
      real*4        a_1_0_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=1000K (1)
      real*4        a_1_2_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=2000K (1)
      real*4        a_1_4_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=4000K (1)
      real*4        a_1_6_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=6000K (1)
      real*4        a_1_8_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=8000K (1)
      real*4        a_10__1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=10kK  (1)
      real*4        a_20__1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=20kK  (1)
      real*4        a_40__1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=40kK  (1)
      real*4        a_60__1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=60kK  (1)
      real*4        a_80__1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=80kK  (1)
      real*4        a_100_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=100kK (1)
      real*4        a_200_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=200kK (1)
      real*4        a_400_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=400kK (1)
      real*4        a_600_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=600kK (1)
      real*4        a_800_1    (nr__1) ! (cm3/s) Rate coefficient {alpha} over T=800kK (1)
*Note (1):
* * For table4.dat: Each listed rate coefficient is the largest of the
*   radially-coupled CT rate coefficient from our MCLZ and Demkov calculations
*   and the canonical radiative CT rate coefficient 10^-14^cm^3^/s (Butler et al.
*   1977, Phys. Rev. A, 16, 500; Stancil & Zygelman 1996ApJ...472..102S).
*   Note that radiative CT does not occur for endoergic reactions.
* * For table5.dat: For Ge, Se, and Br, the spin-orbit coupling rate
*   coefficient found for Cl^+^, 10^-12^cm^3^/s (Pradhan & Dalgarno, 1994,
*   Phys. Rev. A, 49, 960), is adopted as an upper limit when the rate from
*   radial coupling falls below that value. In the case of Se and Br, the SO rate
*   coefficient is adopted only for the dominant exit channels for SO coupling.
*   For CT reactions involving neutral Kr, Rb, and Xe, SO coupling is not
*   relevant and hence we set the rate coefficient to the canonical radiative CT
*   rate 10^-14^cm^3^/s (Butler et al.  1977, Phys. Rev. A, 16, 500) when the
*   radial coupling rate coefficient is smaller than that value.
*   Note that radiative CT does not occur for the endoergic reaction
*     Kr^0^+H^+^ --> Kr^+^+H+{delta}E.

C=============================================================================

C  Loading file 'table4.dat'	! Final-state resolved charge transfer recombination
*                             rate coefficients (cm^3^/s) for the reactions
*                             X^q+^+H --> X^(q-1)+^+H^+^+{delta}E

C  Format for file interpretation

    1 format(
     +  A2,1X,I1,4X,A24,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,
     +  E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,
     +  1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table4.dat')
      write(6,*) '....Loading file: table4.dat'
      do i__=1,159
        read(1,'(A212)')ar__
        read(ar__,1)
     +  El(i__),ion(i__),ExitC(i__),a_0_1(i__),a_0_2(i__),a_0_4(i__),
     +  a_0_6(i__),a_0_8(i__),a_1_0(i__),a_1_2(i__),a_1_4(i__),
     +  a_1_6(i__),a_1_8(i__),a_10_(i__),a_20_(i__),a_40_(i__),
     +  a_60_(i__),a_80_(i__),a_100(i__),a_200(i__),a_400(i__),
     +  a_600(i__),a_800(i__)
c    ..............Just test output...........
        write(6,1)
     +  El(i__),ion(i__),ExitC(i__),a_0_1(i__),a_0_2(i__),a_0_4(i__),
     +  a_0_6(i__),a_0_8(i__),a_1_0(i__),a_1_2(i__),a_1_4(i__),
     +  a_1_6(i__),a_1_8(i__),a_10_(i__),a_20_(i__),a_40_(i__),
     +  a_60_(i__),a_80_(i__),a_100(i__),a_200(i__),a_400(i__),
     +  a_600(i__),a_800(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================

C  Loading file 'table5.dat'	! Final-state resolved charge transfer ionization
*                             rate coefficients (cm^3^/s) for the reactions
*                             X^0^+H^+^ --> X^+^+H+{delta}E

C  Format for file interpretation

    2 format(
     +  A2,1X,I1,4X,A24,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,
     +  E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,
     +  1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2,1X,E8.2)

C  Effective file loading

      open(unit=1,status='old',file=
     +'table5.dat')
      write(6,*) '....Loading file: table5.dat'
      do i__=1,9
        read(1,'(A212)')ar__1
        read(ar__1,2)
     +  El_1(i__),ion_1(i__),ExitC_1(i__),a_0_1_1(i__),a_0_2_1(i__),
     +  a_0_4_1(i__),a_0_6_1(i__),a_0_8_1(i__),a_1_0_1(i__),
     +  a_1_2_1(i__),a_1_4_1(i__),a_1_6_1(i__),a_1_8_1(i__),
     +  a_10__1(i__),a_20__1(i__),a_40__1(i__),a_60__1(i__),
     +  a_80__1(i__),a_100_1(i__),a_200_1(i__),a_400_1(i__),
     +  a_600_1(i__),a_800_1(i__)
c    ..............Just test output...........
        write(6,2)
     +  El_1(i__),ion_1(i__),ExitC_1(i__),a_0_1_1(i__),a_0_2_1(i__),
     +  a_0_4_1(i__),a_0_6_1(i__),a_0_8_1(i__),a_1_0_1(i__),
     +  a_1_2_1(i__),a_1_4_1(i__),a_1_6_1(i__),a_1_8_1(i__),
     +  a_10__1(i__),a_20__1(i__),a_40__1(i__),a_60__1(i__),
     +  a_80__1(i__),a_100_1(i__),a_200_1(i__),a_400_1(i__),
     +  a_600_1(i__),a_800_1(i__)
c    .......End.of.Just test output...........
      end do
      close(1)

C=============================================================================
      stop
      end