J/ApJS/252/15 The GNRIS-Distant Quasar Survey (GNRIS-DQS) (Matthews+, 2021)
Placing high-redshift quasars in perspective: a catalog of spectroscopic
properties from the Gemini Near InfRared Spectrograph-Distant Quasar Survey.
Matthews B.M., Shemmer O., Dix C., Brotherton M.S., Myers A.D.,
Andruchow I., Brandt W.N., Ferrero G.A., Gallagher S.C., Green R., Lira P.,
Plotkin R.M., Richards G.T., Runnoe J.C., Schneider D.P., Shen Y.,
Strauss M.A., Wills B.J.
<Astrophys. J. Suppl. Ser., 252, 15 (2021)>
=2021ApJS..252...15M 2021ApJS..252...15M
ADC_Keywords: QSOs; Spectra, infrared; Surveys; Equivalent widths; Redshifts;
Line Profiles
Keywords: Catalogs ; Quasars ; Active galactic nuclei ; Surveys
Abstract:
We present spectroscopic measurements for 226 sources from the Gemini
Near Infrared Spectrograph-Distant Quasar Survey (GNIRS-DQS). Being
the largest uniform, homogeneous survey of its kind, it represents a
flux-limited sample (mi≲19.0mag, H≲16.5mag) of Sloan Digital Sky
Survey (SDSS) quasars at 1.5≲z≲3.5 with a monochromatic luminosity
(λLλ) at 5100Å in the range of 1044-1046erg/s.
A combination of the GNIRS and SDSS spectra covers principal quasar
diagnostic features, chiefly the CIVλ1549,
MgIIλλ2798,2803, Hβλ4861, and
[OIII]λλ4959,5007 emission lines, in each source. The
spectral inventory will be utilized primarily to develop prescriptions
for obtaining more accurate and precise redshifts, black hole masses,
and accretion rates for all quasars. Additionally, the measurements
will facilitate an understanding of the dependence of rest-frame
ultraviolet-optical spectral properties of quasars on redshift,
luminosity, and Eddington ratio, and test whether the physical
properties of the quasar central engine evolve over cosmic time.
Description:
We have obtained NIR (∼0.8-2.5um) spectra of 272 quasars at high
redshift using the Gemini Near-Infrared Spectrograph (GNIRS), at the
Gemini North Observatory, with a Gemini Large and Long Program.
Our Distant Quasar Survey (GNIRS-DQS) was designed to produce spectra
that, at a minimum, encompass the essential Hβ and [OIII] region
in each source.
The GNIRS-DQS targets were selected from the spectroscopic quasar
catalog of the Sloan Digital Sky Survey (SDSS),
primarily from SDSS Data Release 12 (Paris+ 2017, VII/279) and
supplemented by SDSS Data Release 14 (DR14; Paris+ 2018, VII/286).
The observation log of the original 272 sources (spanning 2017 Aug 31
to 2020 Mar 11) appears in Table 1.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 80 284 Observation log
table2.dat 275 226 Spectral measurements
table3.dat 257 106 Supplemental emission-line measurements
--------------------------------------------------------------------------------
See also:
VII/279 : SDSS quasar catalog, twelfth data release (Paris+, 2017)
VII/286 : SDSS quasar catalog, fourteenth data release (Paris+, 2018)
VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020)
J/A+A/333/231 : O-M stars model atmospheres (Bessell+ 1998)
J/AJ/131/2766 : Quasar luminosity function from SDSS-DR3 (Richards+, 2006)
J/MNRAS/405/2302 : Improved redshifts for SDSS quasar spectra (Hewett+, 2010)
J/ApJ/708/137 : Broad-line AGNs in zCOSMOS survey (Merloni+, 2010)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/753/125 : NIR spectroscopy follow-up of 60 SDSS-DR7 QSOs (Shen+, 2012)
J/ApJ/813/82 : z<0.06 broad-line AGN emission-line measures (Reines+, 2015)
J/ApJ/817/55 : NIR spectroscopy of 1.5<z<3.5 broad-band QSOs (Shen, 2016)
J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016)
J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017)
J/ApJ/871/258 : ELQS in SDSS. III. The full catalog (Schindler+, 2019)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
5- 24 A20 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s)
26- 30 F5.3 --- zSDSS [1.5/3.6] SDSS spectroscopic redshift
32- 36 F5.2 mag Jmag [14.8/17.6] 2MASS J band magnitude
38- 42 F5.2 mag Hmag [14/16.5] 2MASS H band magnitude
44- 48 F5.2 mag Ksmag [13.5/16.7] 2MASS Ks band magnitude
50- 60 A11 "Y/M/D" Date Observation date (UT)
63- 67 A5 --- Sem Semester of observation
69- 72 I4 s Exp [450/2350] Net exposure time
74- 76 A3 --- Comm Additional comment code(s) (1)
78 I1 --- BAL [1]? A Broad Absorption Line quasar? (1=True)
80 I1 --- RL [1]? Quasar is considered non-radio-quiet
(1=True)
--------------------------------------------------------------------------------
Note (1): Code as follows:
1 = At least one exposure was taken under subpar observing conditions.
2 = All exposures were taken under subpar observing conditions.
3 = Supplemental data used from other observations to aid in reduction
as described in Section 4.5.
4 = Observation failed to provide spectrum of the source due to bad weather,
instrument artifacts, or other technical difficulties during the
observation.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
5- 24 A20 --- SDSS SDSS object designation
(JHHMMSS.ss+DDMMSS.s)
26- 30 F5.3 --- zSys [1.56/3.54] Systemic redshift
32- 36 I5 0.1nm LC-Mg2 [8795/12708]? Observed-frame Mg II
emission line peak wavelength (1)
38- 40 I3 0.1nm E_LC-Mg2 [1/24]? Upper uncertainty in LC-Mg2
42- 44 I3 0.1nm e_LC-Mg2 [1/32]? Lower uncertainty in LC-Mg2
46- 49 I4 km/s FWHM-Mg2 [1176/6180]? Mg II emission line FWHM
51- 55 I5 km/s E_FWHM-Mg2 [64/1886]? Upper uncertainty in
FWHM-Mg2
57- 61 I5 km/s e_FWHM-Mg2 [84/2496]? Lower uncertainty in
FWHM-Mg2
63- 65 I3 0.1nm EW-Mg2 [5/53]? Rest-frame Mg II emission line
equivalent width (2)
67- 69 I3 0.1nm E_EW-Mg2 [1/24]? Upper uncertainty in EW-Mg2
71- 73 I3 0.1nm e_EW-Mg2 [1/31]? Lower uncertainty in EW-Mg2
75- 83 E9.2 --- AS-Mg2 [-1.1/1.1]? Asymmetry of Mg II double
Gaussian fit profile
85- 88 F4.2 --- KURT-Mg2 [2/5.8]? Kurtosis of Mg II double
Gaussian fit profile
90- 94 I5 0.1nm LC-Hb [12460/22080] Observed-frame Hbeta
emission line peak wavelength (1)
96- 97 I2 0.1nm E_LC-Hb [1/21] Upper uncertainty in LC-Hb
99- 100 I2 0.1nm e_LC-Hb [1/28] Lower uncertainty in LC-Hb
102- 106 I5 km/s FWHM-Hb [2345/10400] Hbeta emission line FWHM
108- 111 I4 km/s E_FWHM-Hb [40/6456] Upper uncertainty in FWHM-Hb
113- 116 I4 km/s e_FWHM-Hb [52/8542] Lower uncertainty in FWHM-Hb
118- 120 I3 0.1nm EW-Hb [14/121] Rest-frame Hbeta emission line
equivalent width (2)
122- 123 I2 0.1nm E_EW-Hb [1/43] Upper uncertainty in EW-Hb
125- 126 I2 0.1nm e_EW-Hb [1/56] Lower uncertainty in EW-Hb
128- 136 E9.2 --- AS-Hb [-0.82/0.5] Asymmetry of Hbeta double
Gaussian fit profile
138- 141 F4.2 --- KURT-Hb [1.8/5.41] Kurtosis of Hbeta double
Gaussian fit profile
143- 147 I5 0.1nm LC-O3 [12823/22719]? Observed-frame
OIII 5007Å emission line peak
wavelength (1)
149- 151 I3 0.1nm E_LC-O3 [1]? Upper uncertainty in LC-O3
153- 155 I3 0.1nm e_LC-O3 [1]? Lower uncertainty in LC-O3
157- 161 I5 km/s FWHM-O3 [432/10459]? OIII 5007Å emission line
FWHM
163- 165 I3 km/s E_FWHM-O3 [1]? Upper uncertainty in FWHM-O3
167- 169 I3 km/s e_FWHM-O3 [1]? Lower uncertainty in FWHM-O3
171- 172 I2 0.1nm EW-O3 [0/81] Rest-frame OIII 5007Å emission
line equivalent width (2)
174- 176 I3 0.1nm E_EW-O3 [1]? Upper uncertainty in EW-O3
178- 180 I3 0.1nm e_EW-O3 [1]? Lower uncertainty in EW-O3
182- 190 E9.2 --- AS-O3 [-1.1/0.8]? Asymmetry of OIII 5007Å
double Gaussian fit profile
192- 195 F4.2 --- KURT-O3 [1.7/6]? Kurtosis of OIII 5007Å double
Gaussian fit profile
197- 201 I5 0.1nm LC-Ha [16794/22864]? Observed-frame Halpha
emission line peak wavelength (1)
203- 205 I3 0.1nm E_LC-Ha [1/44]? Upper uncertainty in LC-Ha
207- 209 I3 0.1nm e_LC-Ha [1/58]? Lower uncertainty in LC-Ha
211- 215 I5 km/s FWHM-Ha [1809/9934]? Halpha emission line FWHM
217- 220 I4 km/s E_FWHM-Ha [14/2051]? Upper uncertainty in FWHM-Ha
222- 225 I4 km/s e_FWHM-Ha [18/2714]? Lower uncertainty in FWHM-Ha
227- 230 I4 0.1nm EW-Ha [161/719]? Rest-frame Halpha emission
line equivalent width (2)
232- 234 I3 0.1nm E_EW-Ha [1]? Upper uncertainty in EW-Ha
236- 238 I3 0.1nm e_EW-Ha [1]? Lower uncertainty in EW-Ha
240- 248 E9.2 --- AS-Ha [-0.51/0.6]? Asymmetry of Halpha double
Gaussian fit profile
250- 253 F4.2 --- KURT-Ha [2.7/5.3]? Kurtosis of Halpha double
Gaussian fit profile
255- 259 I5 km/s FWHM-Fe2 [1300/10000] FeII emission line FWHM
261- 262 I2 0.1nm EW-Fe2 [2/59] Rest-frame Fe II emission line
equivalent width (3)
264- 269 F6.2 [cW/m2/nm] logF5100 [-16.9/-15.4] Log flux density at
rest-frame 5100Å
271- 275 F5.2 [10-7W] logL5100 [46/48.1] Log monochromatic luminosity
at rest-frame 5100Å
--------------------------------------------------------------------------------
Note (1): Based on peak fit value
Note (2): In units of Angstroms.
Note (3): In the optical as defined by Boroson, & Green (1992ApJS...80..109B 1992ApJS...80..109B).
In units of Angstroms.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
5- 24 A20 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s)
26- 30 I5 0.1nm LC-O2 [9627/12610]? Observed-frame OII 3727Å
emission line peak wavelength (1)
32- 34 I3 0.1nm E_LC-O2 [1/15]? Upper uncertainty in LC-O2
36- 38 I3 0.1nm e_LC-O2 [1/20]? Lower uncertainty in LC-O2
40- 43 I4 km/s FWHM-O2 [549/2990]? OII 3727Å emission line FWHM
45- 47 I3 km/s E_FWHM-O2 [31/486]? Upper uncertainty in FWHM-O2
49- 51 I3 km/s e_FWHM-O2 [42/642]? Lower uncertainty in FWHM-O2
53- 55 I3 0.1nm EW-O2 [2/7]? Rest-frame OII 3727Å emission line
equivalent width (2)
57- 59 I3 0.1nm E_EW-O2 [1]? Upper uncertainty in EW-O2
61- 63 I3 0.1nm e_EW-O2 [1]? Lower uncertainty in EW-O2
65- 73 E9.2 --- AS-O2 [-0.9/0.5]? Asymmetry of OII 3727Å double
Gaussian fit profile
75- 78 F4.2 --- KURT-O2 [1.7/8.2]? Kurtosis of OII 3727Å double
Gaussian fit profile
80- 84 I5 0.1nm LC-Ne3 [10005/17119]? Observed-frame NeIII 3870Å
emission line peak wavelength (1)
86- 88 I3 0.1nm E_LC-Ne3 [1/17]? Upper uncertainty in LC-Ne3
90- 92 I3 0.1nm e_LC-Ne3 [1/22]? Lower uncertainty in LC-Ne3
94- 99 I6 km/s FWHM-Ne3 [1164/5302]? NeIII 3870Å emission line FWHM
101- 105 I5 km/s E_FWHM-Ne3 [16/15599]? Upper uncertainty in FWHM-Ne3
107- 111 I5 km/s e_FWHM-Ne3 [21/20638]? Lower uncertainty in FWHM-Ne3
113- 115 I3 0.1nm EW-Ne3 [2/58]? Rest-frame NeIII 3870Å emission
line equivalent width (2)
117- 119 I3 0.1nm E_EW-Ne3 [1/42]? Upper uncertainty in EW-Ne3
121- 123 I3 0.1nm e_EW-Ne3 [1/55]? Lower uncertainty in EW-Ne3
125- 133 E9.2 --- AS-Ne3 [-0.5/0.95]? Asymmetry of NeIII 3870Å
double Gaussian fit profile
135- 138 F4.2 --- KURT-Ne3 [1.6/7.6]? Kurtosis of NeIII 3870Å double
Gaussian fit profile
140- 144 I5 0.1nm LC-Hd [10565/18233]? Observed-frame Hdelta
emission line peak wavelength (1)
146- 148 I3 0.1nm E_LC-Hd [1/19]? Upper uncertainty in LC-Hd
150- 152 I3 0.1nm e_LC-Hd [1/24]? Lower uncertainty in LC-Hd
154- 159 I6 km/s FWHM-Hd [1116/80134]? Hdelta emission line FWHM
161- 165 I5 km/s E_FWHM-Hd [114/43626]? Upper uncertainty in FWHM-Hd
167- 171 I5 km/s e_FWHM-Hd [151/57721]? Lower uncertainty in FWHM-Hd
173- 175 I3 0.1nm EW-Hd [1/153]? Rest-frame Hdelta emission line
equivalent width (2)
177- 179 I3 0.1nm E_EW-Hd [1/65]? Upper uncertainty in EW-Hd
181- 183 I3 0.1nm e_EW-Hd [1/86]? Lower uncertainty in EW-Hd
185- 193 E9.2 --- AS-Hd [-0.63/0.8]? Asymmetry of Hdelta double
Gaussian fit profile
195- 198 F4.2 --- KURT-Hd [1.7/6.3]? Kurtosis of Hdelta double
Gaussian fit profile
200- 204 I5 0.1nm LC-Hg [11193/19447]? Observed-frame Hgamma
emission line peak wavelength (1)
206- 208 I3 0.1nm E_LC-Hg [1/14]? Upper uncertainty in LC-Hg
210- 212 I3 0.1nm e_LC-Hg [1/19]? Lower uncertainty in LC-Hg
214- 218 I5 km/s FWHM-Hg [1141/7426]? Hgamma emission line FWHM
220- 224 I5 km/s E_FWHM-Hg [64/11144]? Upper uncertainty in FWHM-Hg
226- 230 I5 km/s e_FWHM-Hg [85/14745]? Lower uncertainty in FWHM-Hg
232- 234 I3 0.1nm EW-Hg [6/149]? Rest-frame Hgamma emission line
equivalent width (2)
236- 238 I3 0.1nm E_EW-Hg [1/54]? Upper uncertainty in EW-Hg
240- 242 I3 0.1nm e_EW-Hg [1/72]? Lower uncertainty in EW-Hg
244- 252 E9.2 --- AS-Hg [-0.5/0.5]? Asymmetry of Hgamma double
Gaussian fit profile
254- 257 F4.2 --- KURT-Hg [1.7/4.3]? Kurtosis of Hgamma double
Gaussian fit profile
--------------------------------------------------------------------------------
Note (1): Based on peak fit value
Note (2): In units of Angstroms.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 21-Apr-2021