J/ApJS/211/20       NiI transition probability measurements       (Wood+, 2014)

Improved NiI log(gf) values and abundance determinations in the photospheres of the Sun and metal-poor star HD 84937. Wood M.P., Lawler J.E., Sneden C., Cowan J.J. <Astrophys. J. Suppl. Ser., 211, 20 (2014)> =2014ApJS..211...20W 2014ApJS..211...20W
ADC_Keywords: Atomic physics ; Stars, nearby ; Sun ; Abundances Keywords: atomic data; methods: laboratory: atomic; stars: abundances; stars: individual: HD 84937; Sun: abundances Abstract: Atomic transition probability measurements for 371 NiI lines in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer and a new echelle spectrograph are combined with published radiative lifetimes to determine these transition probabilities. Generally good agreement is found in comparisons to previously reported NiI transition probability measurements. Use of the new echelle spectrograph, independent radiometric calibration methods, and independent data analysis routines enable a reduction of systematic errors and overall improvement in transition probability uncertainty over previous measurements. The new NiI data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ni abundances. Lines covering a wide range of wavelength and excitation potential are used to search for non-LTE effects. Description: As in much of our previous branching fraction work, this NiI branching fraction study makes use of archived FTS data from both the 1.0m Fourier Transform Spectrometer (FTS) previously at the National Solar Observatory (NSO) on Kitt Peak and the Chelsea Instruments FT500 UV FTS at Lund University in Sweden. Table 1 lists the 37 FTS spectra used in our NiI branching fraction study. All NSO spectra, raw interferograms, and header files are available in the NSO electronic archives. The 80 CCD frames of spectra from commercial Ni HCD lamps of the echelle spectrograph are listed in Table 2. Objects: ----------------------------------------------------- RA (ICRS) DE Designation(s) ----------------------------------------------------- 09 48 56.10 +13 44 39.3 HD 84937 = TYC 834-654-1 ----------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 127 37 Fourier Transform Spectra of Ni Hollow Cathode Discharge (HCD) lamps table2.dat 64 16 Echelle Spectra of commercial Ni HCD lamps table3.dat 62 371 Atomic transition probabilities for 371 lines of NiI organized by increasing wavelength in air table4.dat 29 76 Solar photospheric nickel abundances from individual NiI lines table5.dat 25 77 Nickel abundances from individual NiI lines in HD 84937 table7.dat 59 303 Shifted isotopic wavelengths for 303 lines of NiI organized by increasing center of gravity wavelength in air -------------------------------------------------------------------------------- See also: VI/72 : Atomic Transition Probabilities, Sc-Ni (NIST 1993) J/ApJ/738/5 : Effective collision strengths in NiII (Cassidy+, 2011) J/ApJ/736/87 : Abundances in G-type stars with exoplanets (Kang+, 2011) J/A+A/513/A55 : Effective collision strengths of NiII (Cassidy+, 2010) J/ApJS/156/105 : Transitions in L-shell ions of Fe and Ni (Gu+, 2005) J/A+AS/119/99 : [NiI] + [NiII] transition probabilities (Quinet+, 1996) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq [1/37] Running sequence number (1) 4- 14 A11 "YYYY/MMM/DD" Date Observation date 16- 18 I3 --- Num [1/677] Serial number 20- 33 A14 --- Lamp Lamp type (2) 35- 39 A5 --- Gas Buffer gas 41- 46 F6.1 mA CLamp [0.8/2000] Lamp current 48- 52 I5 cm-1 Wave1 [0/28436] Lower range of wavenumber 53 A1 --- --- [-] 54- 58 I5 cm-1 Wave2 [7811/56873] Upper range of wavenumber 60- 64 F5.3 cm-1 Lim [0.01/0.07] Limit of resolution 66- 67 I2 --- coadd [4/40] Coadds 69- 73 A5 --- Beam Beam splitter 75- 92 A18 --- Filt Filter 94-127 A34 --- Det Detector (3) -------------------------------------------------------------------------------- Note (1): Spectra with indices 1 through 15 were recorded using the UV Chelsea Instruments FT500 at Lund University, Sweden. Spectra with indices 16 through 37 were recorded using the 1.0m FTS on the McMath telescope at the National Solar Observatory, Kitt Peak, AZ. Note (2): Lamp types include Commercial sealed HCD lamps typically used in Atomic Absorption Spectrophotometers for analytical chemistry and custom water cooled HCD lamps for high current operation. Note (3): Detector types include 1P28 Photomultiplier Tubes (PMTs), R166 Solar Blind PMTs, R1516 PMTs, Super Blue silicon (Si) Photodiodes (PDs), Mid Range Si PDs, and indium antimonide (InSb) detectors for the near-infrared. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Seq Running sequence number (38-117) 9- 19 A11 "YYYY/MMM/DD" Date Observation date 21- 34 A14 --- Num Serial numbers (1) 36- 37 A2 --- Gas Buffer gas 39 I1 mA CLamp [1/5] Lamp current 41- 44 I4 0.1nm lam1 [2000/2200] Lower wavelength range in Å 45 A1 --- --- [-] 46- 49 I4 0.1nm lam2 [2800/3900] Upper wavelength range in Å 51- 56 I6 --- Res [125000/250000] Resolving power (2) 58- 59 I2 --- coadd [6/80] Coadds 61- 64 I4 s Exp [60/1200] Exposure time -------------------------------------------------------------------------------- Note (1): At least three CCD frames are needed to capture a complete echelle grating order in the UV. Five CCD frames are used to provide redundancy and a check for lamp drift. Note (2): Resolving power is adjusted by changing the diameter of the precision-machined entrance pinholes from 50um (which gives R∼250000) to 100um (R∼125000). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.4 0.1nm lambda [2121/7789] Wavelength in air in Å 11- 19 F9.3 cm-1 E1 Upper level energy 21- 22 A2 --- P1 [ev/od] Upper level parity (ev:even, od:odd) 24 I1 --- J1 Upper level J value 26- 34 F9.3 cm-1 E0 Lower level energy 36- 37 A2 --- P0 [ev/od] Lower level parity (ev:even, od:odd) 39 I1 --- J0 Lower level J value 41- 48 F8.4 10+6/s A Transition probability 50- 56 F7.4 10+6/s e_A Total uncertainty in TranP 58- 62 F5.2 [-] log(gf) Log of degeneracy times oscillator strength -------------------------------------------------------------------------------- Byte-by-byte Description of file: table[45].dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.3 0.1nm lambda [2318/7789] Wavelength in air in Å 10- 14 F5.3 eV E0 Lower level energy 16- 20 F5.2 [-] log(gf) Log of degeneracy times oscillator strength 22- 25 F4.2 [-] log(eps) Log of abundance (log(N/H)+12) 27- 29 A3 --- Isot [yes/no ] Isotopic structure used in synthetic spectra (only for table 4) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.4 0.1nm lam.c [2121.39/7788.94] Center of gravity air wavelength in Angstroms 11- 19 F9.3 cm-1 E1 Upper level energy 21- 22 A2 --- P1 [ev/od] Upper level parity (ev:even, od:odd) 24 I1 --- J1 Upper level J value 26- 34 F9.3 cm-1 E0 Lower level energy 36- 37 A2 --- P0 [ev/od] Lower level parity (ev:even, od:odd) 39 I1 --- J0 Lower level J value 41- 49 F9.4 0.1nm lam.58 Air wavelength of 58Ni isotope in Angstroms 51- 59 F9.4 0.1nm lam.60 Air wavelength of 60Ni isotope in Angstroms -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 30-Apr-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line