J/ApJ/900/42        CARMENES obs. of the binary system LB-1        (Liu+, 2020)

Phase-dependent study of near-infrared disk emission lines in LB-1. Liu J., Zheng Z., Soria R., Aceituno J., Zhang H., Lu Y., Wang S., Hamann W.-R., Oskinova L.M., Ramachandran V., Yuan H., Bai Z., Wang S., McKee B.J., Wu J., Wang J., Lattanzi M., Belczynski K., Casares J., Gonzalez Hernandez J.I., Rebolo R. <Astrophys. J., 900, 42-42 (2020)> =2020ApJ...900...42L 2020ApJ...900...42L (SIMBAD/NED BibCode)
ADC_Keywords: Binaries, spectroscopic; Spectra, optical; Spectra, infrared; Equivalent widths Keywords: Black holes; black hole physics; Stellar evolution; Be stars Abstract: The mass, origin, and evolutionary stage of the binary system LB-1 have been intensely debated, following the claim that it hosts an ∼70M black hole, in stark contrast with the expectations for Galactic remnants. We conducted a high-resolution, phase-resolved spectroscopic study of its Paschen lines, using the Calar Alto 3.5m telescope. We find that Paβ and Paγ (after subtraction of the stellar absorption component) are well fitted with a standard double-peaked disk profile. We measured the velocity shifts of the red and blue peaks at 28 orbital phases: the line center has an orbital motion in perfect antiphase with the secondary, and the radial velocity amplitude ranges from 8 to 13km/s, for different methods of profile modeling. We interpret this curve as proof that the disk traces the orbital motion of the primary, ruling out the circumbinary disk and the hierarchical triple scenarios. The phase-averaged peak-to-peak half-separation (a proxy for the projected rotational velocity of the outer part of the disk) is ∼70km/s, larger than the orbital velocity of the secondary and inconsistent with a circumbinary disk. From those results, we infer a primary mass 4-8 times higher than the secondary mass. Moreover, we show that the intensity ratio of the blue and red peaks has a sinusoidal behavior in phase with the secondary, which we attribute to external irradiation of the outer part of the disk. Finally, we discuss our findings in the context of competing scenarios proposed for LB-1. Further astrometric Gaia data will test between alternative solutions. Description: We have observed LB-1 at regular intervals (28 epochs) since November 2019 (Table 1), with the "Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs" (CARMENES) mounted on the 3.5m telescope at the Calar Alto Observatory. The CARMENES instrument consists of two separate spectrographs covering the wavelength ranges from 0.52 to 0.96um and from 0.96-1.71um with R∼80000-100000. Objects: ---------------------------------------------------------- RA (ICRS) DE Designation(s) ---------------------------------------------------------- 06 11 49.08 +22 49 32.7 LB-1 = LS V +22 25 ---------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 37 100 Log of our Calar Alto observations fig3.dat 77 28 Asymmetry between the red- and blue-side emission as a function of binary phase, for both Paβ and Paγ fig5.dat 148 28 Measurements and model fitting of the projected radial velocities of the secondary star and primary -------------------------------------------------------------------------------- See also: B/vsx : AAVSO International Variable Star Index VSX (Watson+, 2006-2014) VI/39 : Model Atmospheres (Kurucz, 1979) I/345 : Gaia DR2 (Gaia Collaboration, 2018) J/A+A/530/A115 : Rotating massive MS stars evolutionary models (Brott+, 2011) J/A+A/537/A146 : Stellar models with rotation. 0.8<M<120 (Ekstrom+, 2012) J/A+A/545/A121 : ο Puppis spectra (Koubsky+, 2012) J/A+A/587/A61 : Stellar-mass BH in X-ray transients (Corral-Santana+, 2016) J/A+A/615/A78 : Spectral models for binary products (Goetberg+, 2018) J/A+A/619/A148 : Hot stars observed by XMM-Newton. II. (Naze+, 2018) J/A+A/639/L6 : HERMES spectra of LS V +22 25 (Shenar+, 2020) J/A+A/649/A167 : Hubble spectroscopy of LB-1 (LS V +22 25) (Lennon+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 "Y/M/D" Date Observation date 12- 21 F10.4 d BJD [58757.6/58906.4] Barycentric modified Julian Date of mid exposure; BJD-2400000.5 23- 26 I4 s Exp [396/1801] Exposure time 28- 33 F6.4 --- Phase Phase at mid exposure (1) 35- 37 A3 --- Band Observational band used ("VIS" or "NIR") -------------------------------------------------------------------------------- Note (1): Phase of 0 corresponds to inferior conjunction of the companion star, orbiting in a counterclockwise direction. Thus, a phase of 0.25 corresponds to its highest projected radial velocity. -------------------------------------------------------------------------------- Byte-by-byte Description of file: fig3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.4 d BJD Barycentric Julian Date; BJD-2400000 12- 17 F6.4 --- Phase Orbital phase 19- 25 F7.4 --- R/B-PaB Paβ red and blue peak flux difference 27- 32 F6.4 --- e_R/B-PaB Uncertainty in R/B-PaB 34- 40 F7.4 --- R/B-Pag Paγ red and blue peak flux difference 42- 47 F6.4 --- e_R/B-Pag Uncertainty in R/B-Pag 49- 55 F7.4 0.1nm EWPaB [-2.3/1.8] Paβ equivalent widths difference (1) 57- 62 F6.4 0.1nm e_EWPaB [0.02/0.3] Uncertainty in EWPaB (1) 64- 70 F7.4 0.1nm EWPag [-1.1/0.8] Paγ equivalent widths difference (1) 72- 77 F6.4 0.1nm e_EWPag [0.003/0.14] Uncertainty in EWPag (1) -------------------------------------------------------------------------------- Note (1): Redward and blueward of the mean peak locations. Units are Angstroms. -------------------------------------------------------------------------------- Byte-by-byte Description of file: fig5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.4 d BJD Barycentric Julian Date; BJD-2400000 12- 19 F8.6 --- Phase Orbital phase 21- 28 F8.4 km/s V2 [-24.08/81] Secondary velocity 30- 36 F7.4 km/s V1dgb [18.16/37.3] Local Gaussian fit of Paβ mean red & blue peak velocity 38- 43 F6.4 km/s e_V1dgb [0.4/3.8] Uncertainty in V1d-gb 45- 51 F7.4 km/s Vrgb Local Gaussian fit of Paβ half separation between the red and blue peak velocity 53- 58 F6.4 km/s e_Vrgb Uncertainty in Vr-gb 60- 66 F7.4 km/s V1dgg [15.3/38.4] Local Gaussian fit of Paγ mean red & blue peak velocity 68- 73 F6.4 km/s e_V1dgg [0.38/4.7] Uncertainty in V1d-gg 75- 81 F7.4 km/s Vrgg Local Gaussian fit of Paγ half separation between the red and blue peak velocity 83- 88 F6.4 km/s e_Vrgg Uncertainty in Vr-gg 90- 96 F7.4 km/s V1dsb Extended Smak Fit of Paβ mean red & blue peak velocity 98-103 F6.4 km/s e_V1dsb Uncertainty in V1d-sb 105-111 F7.4 km/s Vrsb Extended Smak Fit of Paβ half separation between the red and blue peak velocity 113-118 F6.4 km/s e_Vrsb Uncertainty in Vr-sb 120-126 F7.4 km/s V1dsg Extended Smak Fit of Paγ mean red & blue peak velocity 128-133 F6.4 km/s e_V1dsg Uncertainty in V1d-sg 135-141 F7.4 km/s Vrsg Extended Smak Fit of Paγ half separation between the red and blue peak velocity 143-148 F6.4 km/s e_Vrsg Uncertainty in Vr-sg -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 10-Dec-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line