J/ApJ/871/17  HI and CO observations of M33 interstellar medium  (Utomo+, 2019)

The origin of interstellar turbulence in M33. Utomo D., Blitz L., Falgarone E. <Astrophys. J. Ser., 871, 17 (2019)> =2019ApJ...871...17U 2019ApJ...871...17U
ADC_Keywords: Galaxies, nearby; Molecular clouds; Interstellar medium; Carbon monoxide; H I data; Velocity dispersion Keywords: galaxies: individual (M33) ; ISM: kinematics and dynamics ; ISM: structure Abstract: We utilize the multi-wavelength data of M33 to study the origin of turbulence in its interstellar medium. We find that the HI turbulent energy surface density inside 8kpc is ∼1-3x1046erg/pc2, and has no strong dependence on galactocentric radius because of the lack of variation in HI surface density and HI velocity dispersion. Then, we consider the energies injected by supernovae (SNe), the magneto-rotational instability (MRI), and the gravity-driven turbulence from accreted materials as the sources of turbulent energy. For a constant dissipation time of turbulence, the SNe energy can maintain turbulence inside ∼4kpc radius (equivalent to ∼0.5R25), while the MRI energy is always smaller than the turbulent energy within 8kpc radius. However, when we let the dissipation time to be equal to the crossing time of turbulence across the HI scale height, the SNe energy is enough to maintain turbulence out to 7kpc radius, and the sum of SNe and MRI energies is able to maintain turbulence out to 8kpc radius. Due to lack of constraint in the mass accretion rate through the disk of M33, we cannot rule out the accretion driven turbulence as a possible source of energy. Furthermore, by resolving individual giant molecular clouds in M33, we also show that the SNe energy can maintain turbulence within individual molecular clouds with ∼1% of coupling efficiency. This result strengthens the proposition that stellar feedback is an important source of energy to maintain turbulence in nearby galaxies. Description: The data cube of HI emission (spectral resolution of 0.2km/s) is retrieved from Koch+ (2018MNRAS.479.2505K 2018MNRAS.479.2505K). This data cube is a combination of new interferometric observations from the Karl G. Jansky Very Large Array (Project ID 14B-088) and archival single dish observations from the Robert C. Byrd Green Bank Telescope (2002 October). As part of the M33 CO Large Program (Gratier+ 2010, J/A+A/522/A3; Druard+ 2014A&A...567A.118D 2014A&A...567A.118D), the CO(2-1) line has been observed over the whole disk of M33 down to a noise level of 20mK per channel. The on-the-fly mapping technique was done with the Heterodyne Receiver Array (HERA) multibeam dual-polarization receiver on the Institut Radioastronomie Millimetrique (IRAM) 30m telescope on Pico Veleta, Spain. We adopt a line ratio CO(2-1)/CO(1-0) of 0.7. The data have a spatial resolution of 12" and a spectral resolution of 2.6km/s. Objects: ---------------------------------------------------------- RA (ICRS) DE Designation(s) ---------------------------------------------------------- 01 33 50.90 +30 39 35.8 M33 = NAME Triangulum Galaxy ---------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 136 80 The radial profile of energy per unit area table2.dat 114 80 The radial profile of surface densities, velocity dispersion, and scale-height table3.dat 78 124 The properties of molecular clouds in M33 -------------------------------------------------------------------------------- See also: J/ApJS/149/343 : Giant molecular clouds in M33 (Engargiola+, 2003) J/A+A/417/421 : WSRT wide-field HI survey. II. (Braun+, 2004) J/ApJS/173/185 : GALEX UV atlas of nearby galaxies (Gil de Paz+, 2007) J/ApJ/658/1006 : Radial profiles for face-on spirals (Munoz-Mateos+, 2007) J/ApJ/661/830 : Giant molecular clouds of M33 (Rosolowsky+, 2007) J/AJ/136/2782 : Star formation efficiency in nearby galaxies (Leroy+, 2008) J/ApJ/675/1213 : Abundances in M33 HII regions (Rosolowsky+, 2008) J/AJ/136/2563 : HI Nearby Galaxy Survey, THINGS (Walter+, 2008) J/ApJ/703/517 : The Spitzer Local Volume Legacy: IR photometry (Dale+, 2009) J/ApJ/699/1092 : Giant molecular clouds (SRBY) (Heyer+, 2009) J/A+A/522/A3 : M33 CO(2-1) & HI integrated intensity maps (Gratier+, 2010) J/A+A/542/A108 : Giant molecular clouds in M33 (Gratier+, 2012) J/A+A/548/A52 : Molecular cloud formation in M33 (Braine+, 2012) J/ApJ/761/37 : CO obs. in giant molecular clouds of M33 (Miura+, 2012) J/A+A/549/A17 : IRAM spectra toward M33 Molecular Clouds (Buchbender+, 2013) J/ApJ/803/16 : Giant molecular clouds in NGC4526 from 12CO (Utomo+, 2015) J/A+A/601/A146 : M33 molecular clouds & stellar clusters (Corbelli+, 2017) J/MNRAS/468/3965 : SAMI Galaxy Survey. Gas surface densities (Federrath+, 2017) J/ApJ/846/71 : M51 ISM structures from the CO maps of PAWS (Leroy+, 2017) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 F4.2 kpc Rad [0.05/8] Radius 6- 9 F4.2 kpc e_Rad [0.05] Error in Rad 11- 14 F4.2 10+39J/pc2 Kin [1.7/4.4] Kinetic energy surface density 16- 19 F4.2 10+39J/pc2 e_Kin [0.3/1.8] Lower limit in Kin 21- 24 F4.2 10+39J/pc2 E_Kin [0.3/1.8] Upper limit in Kin 26- 29 F4.2 10+39J/pc2 Therm [0.4/0.9] Thermal energy surface density 31- 34 F4.2 10+39J/pc2 e_Therm [0.1/0.4] Lower limit in Therm 36- 39 F4.2 10+39J/pc2 E_Therm [0.05/0.3] Upper limit in Therm 41- 44 F4.2 10+39J/pc2 Turb [1.3/3.7] Turbulent energy surface density 46- 49 F4.2 10+39J/pc2 e_Turb [0.4/2] Lower limit in Turb 51- 54 F4.2 10+39J/pc2 E_Turb [0.5/2] Upper limit in Turb 56- 59 F4.2 10+39J/pc2 MRI [0.07/1.1] The magneto-rotational instability (MRI) energy surface density 61- 64 F4.2 10+39J/pc2 e_MRI [0.04/1] Lower limit in MRI 66- 69 F4.2 10+39J/pc2 E_MRI [0.06/2.3] Upper limit in MRI 71- 75 F5.2 10+39J/pc2 SNeC [0.1/26.7] Supernovae energy surface density with constant dissipation time of 9.8Myr 77- 81 F5.2 10+39J/pc2 e_SNeC [0.08/9.7] Lower limit in SNeC 83- 87 F5.2 10+39J/pc2 E_SNeC [0.2/51.2] Upper limit in SNeC 89- 93 F5.2 10+39J/pc2 SNeV [1.1/34.8] Supernovae energy surface density with variable dissipation time 95- 99 F5.2 10+39J/pc2 e_SNeV [0.8/22.3] Lower limit in SNeC 101-106 F6.2 10+39J/pc2 E_SNeV [2.4/193] Upper limit in SNeC 108-111 F4.2 --- EffC [0.1/3.3] Total coupling efficiency; Turb/(MRI+SNeC) 113-116 F4.2 --- e_EffC [0.02/2.1] Lower limit in EffC 118-121 F4.2 --- E_EffC [0.03/9.2] Upper limit in EffC 123-126 F4.2 --- EffV [0.08/0.9] Total coupling efficiency; Turb/(MRI+SNeV) 128-131 F4.2 --- e_EffV [0.02/0.6] Lower limit in EffV 133-136 F4.2 --- E_EffV [0.02/2.1] Upper limit in EffV -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 F4.2 kpc Rad [0.05/8] Radius 6- 9 F4.2 kpc e_Rad [0.05] Error in Rad 11- 14 F4.2 Msun/pc2 AtomSB [4.5/9.8] Atomic gas mass surface density 16- 19 F4.2 Msun/pc2 e_AtomSB [0.5/3.7] Lower limit in AtomSB 21- 24 F4.2 Msun/pc2 E_AtomSB [0.5/4.3] Upper limit in AtomSB 26- 29 F4.2 Msun/pc2 MolSB [0.2/6] Molecular gas mass surface density 31- 34 F4.2 Msun/pc2 e_MolSB [0.2/3.1] Lower limit in MolSB 36- 39 F4.2 Msun/pc2 E_MolSB [0.8/5.2] Upper limit in MolSB 41- 47 F7.2 Msun/pc2 StarSB [3.8/1019] Stellar mass surface density 49- 53 F5.2 Msun/pc2 e_StarSB [0.04/19]? Lower limit in StarSB (1) 55- 59 F5.2 Msun/pc2 E_StarSB [0.1/19]? Upper limit in StarSB (1) 61- 65 F5.2 Msun/pc2/Gyr SFRSB [0.05/13.4] Star formation rate surface density 67- 71 F5.2 Msun/pc2/Gyr e_SFRSB [0.04/5] Lower limit in SFRSB 73- 77 F5.2 Msun/pc2/Gyr E_SFRSB [0.1/26] Upper limit in SFRSB 79- 83 F5.2 km/s VDisp [9.9/13.7] Atomic gas velocity dispersion 85- 88 F4.2 km/s e_VDisp [0.2/1.2] Lower limit in VDisp 90- 93 F4.2 km/s E_VDisp [0/2.3] Upper limit in VDisp 95-100 F6.2 pc Height [72/628] Scale-height of the atomic gas 102-107 F6.2 pc e_Height [19/416] Lower limit in Height 109-114 F6.2 pc E_Height [20/929] Upper limit in Height -------------------------------------------------------------------------------- Note (1): Blanks indicate nan values. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/124] Cloud number, ordered from center of M33 5- 8 F4.2 kpc Rad [0.2/6.7] Cloud distance from M33 center 10- 13 F4.2 kpc e_Rad [0.02/0.2] Uncertainty in Rad 15- 20 F6.2 pc Size [36/140] Effective cloud radius defined as (area/π)^0.5 22- 26 F5.2 pc e_Size [16.66] Uncertainty in Size (1) 28- 31 F4.2 10+5Msun Mass [0.1/6.8] Cloud mass derived using a variable α_CO 33- 36 F4.2 10+5Msun e_Mass [0.01/0.4] Uncertainty in Mass (2) 38- 41 F4.2 km/s VDisp [1/5.4]? Mean cloud velocity dispersion 43- 46 F4.2 km/s e_VDisp [0/9.4]? Uncertainty in VDisp (3) 48- 52 F5.2 [10+44J/pc2] logTEng [-4.3/-0.4]? Log cloud turbulent energy surface density in units of 1051erg/pc2 54- 57 F4.2 [10+44J/pc2] e_logTEng [0.04/1.2]? Lower limit in logTEng 59- 62 F4.2 [10+44J/pc2] E_logTEng [0.04/0.5]? Upper limit in logTEng 64- 68 F5.2 [10+44J/pc2] logSNe [-1.5/1.71] Log cloud supernovae energy surface density in units of 1051erg/pc2 70- 73 F4.2 [10+44J/pc2] e_logSNe [0.01/0.2] Lower limit in logSNe 75- 78 F4.2 [10+44J/pc2] E_logSNe [0.01/0.2] Upper limit in logSNe -------------------------------------------------------------------------------- Note (1): The uncertainty is the physical size of one pixel. Note (2): The uncertainty is calculated using bootstrap resampling with 1000 iterations. Note (3): The uncertainty is standard deviation of velocity dispersion within a cloud. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 24-Jul-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line