J/A+A/666/A1           Strong lensing in UNIONS                  (Savary+, 2022)

Strong lensing in UNIONS: Towards a pipeline from discovery to modelling. Savary E., Rojas K., Maus M., Clement B., Courbin F., Gavazzi R., Chan J.H.H., Lemon C., Vernardos G., Canameras R., Schuldt S., Suyu S.H., Cuillandre J.-C., Fabbro S., Gwyn S., Hudson M.J., Kilbinger M., Scott D., Stone C. <Astron. Astrophys. 666, A1 (2022)> =2022A&A...666A...1S 2022A&A...666A...1S (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Gravitational lensing Keywords: gravitational lensing: strong - surveys - techniques: image processing Abstract: We present a search for galaxy-scale strong gravitational lenses in the initial 2500 square degrees of the Canada-France Imaging Survey (CFIS). We design a convolutional neural network (CNN) committee that we apply on a selection of 2344002 exquisite-seeing r-band images of color-selected luminous red galaxies (LRGs). Our classification uses a realistic training set where both the lensing galaxies and the lensed sources are taken from real data, i.e., the CFIS r-band images themselves and Hubble Space Telescope (HST). A total of 9460 candidates obtain a score above 0.5 with the CNN committee. After a visual inspection of the candidates, we find a total of 133 lens candidates, among which 104 are completely new. The set of false positives mainly contains ring, spiral and merger galaxies and to a smaller extent galaxies with nearby companions. We classify 32 of the lens candidates as secure lenses and 101 as maybe lenses. For the 32 best-quality lenses, we also fit a singular isothermal ellipsoid mass profile with external shear along with an elliptical Sersic profile for the lens and source light. This automated modeling step provides distributions of properties for both sources and lenses which have Einstein radii in the range 0.5"<θE<2.5". Finally, we introduce a new lens/source single-band deblending algorithm based on auto-encoders representation of our candidates. This is the first time an end-to-end lens-finding and modeling pipeline is assembled together, in view of future lens searches in single band, as will be possible with Euclid. Description: In this paper we presented the design of an automated pipeline to find galaxy-scale strong lenses using convolutional neural networks and applied it to the CFIS wide-field optical imaging survey being carried out with the 3.6 m CFHT in Hawaii. We used only the deep and sharp r-band images for which the median seeing is 0.6" down to a 10σ depth of r=24.6. We used 2500deg2 of CFIS in the present work since the survey is still ongoing; it is expected to reach a total area of 5000 deg2 of the northern sky, when completed. Following the visual inspection, we found 32 objects with striking lensing features and 101 objects that show strong signs of lensing but that need further data to confirm (i.e., higher resolution, and deeper imaging and/or spectroscopy). A by-product of our simulations set is that we were able to train auto-encoders to learn the lens light and lensed-source light separately and we then deblended the lens plane from the source plane for all 133 objects. We also produced a catalog of contaminants that mimic lensing geometry (i.e., 238 mergers, 369 ring galaxies, and 961 spiral galaxies). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file lenses.dat 56 133 Lens candidates obtained after the last stage of the visual inspection (table 1) model.dat 102 37 Modeling parameter of the sure lens candidates (table 2) spirals.dat 40 957 Objects flagged as spiral galaxies during visual inspection (table 4) rings.dat 40 365 Objects flagged as ring galaxies during visual inspection (table 3) mergers.dat 40 957 Objects flagged as mergers during visual inspection (table 5) -------------------------------------------------------------------------------- Byte-by-byte Description of file: lenses.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Name Candidate identifier (UNIONS JHHMMSS+SSMMSS) 23- 27 F5.3 --- CNNscore [0.5/1.0] Output score from the neural network 29- 37 A9 --- Ref Reference(s) for candidates in the literature (1) 39- 40 I2 h RAh Right ascension (J2000) 42- 43 I2 min RAm Right ascension (J2000) 45- 46 I2 s RAs Right ascension (J2000) 48 A1 --- DE- Declination sign (J2000) 49- 50 I2 deg DEd Declination (J2000) 52- 53 I2 arcmin DEm Declination (J2000) 55- 56 I2 arcsec DEs Declination (J2000) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Bolton et al., 2008ApJ...682..964B 2008ApJ...682..964B, Cat. J/ApJ/682/964 2 = Inada et al., 2009AJ....137.4118I 2009AJ....137.4118I 3 = Paraficz et al., 2016A&A...592A..75P 2016A&A...592A..75P, Cat. J/A+A/592/A75 4 = Shu et al., 2016ApJ...833..264S 2016ApJ...833..264S 5 = Shu et al., 2017ApJ...851...48S 2017ApJ...851...48S, Cat. J/ApJ/851/48 6 = Sonnenfeld et al., 2018PASJ...70S..29S 2018PASJ...70S..29S 7 = Cao et al., 2020MNRAS.499.3610C 2020MNRAS.499.3610C 8 = Canameras et al., 2020A&A...644A.163C 2020A&A...644A.163C, Cat. J/A+A/644/A163 9 = Chan et al., 2020A&A...636A..87C 2020A&A...636A..87C 10 = Jaelani et al., 2021MNRAS.502.1487J 2021MNRAS.502.1487J 11 = Huang et al., 2021ApJ...909...27H 2021ApJ...909...27H 12 = Talbot et al., 2021MNRAS.502.4617T 2021MNRAS.502.4617T -------------------------------------------------------------------------------- Byte-by-byte Description of file: model.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Name Candidate identifier (UNIONS JHHMMSS+SSMMSS) 22 A1 --- n_Name [*] Note on Name (1) 24- 28 F5.2 --- rchi2 [0.91/17.3] Reduced chi2 30- 34 F5.3 arcsec RE Einstein radius 36- 40 F5.3 arcsec E_RE Einstein radius error (upper value) 42- 46 F5.3 arcsec e_RE Einstein radius error (lower value) 48- 52 F5.3 --- qm Axis ratio 54- 58 F5.3 --- E_qm Axis ratio error (upper value) 60- 64 F5.3 --- e_qm Axis ratio error (lower value) 66- 68 I3 deg phim Position angle of the lens mass SIE model 70- 71 I2 deg E_phim Position angle of the lens mass SIE model error (upper value) 73- 74 I2 deg e_phim Position angle of the lens mass SIE model error (lower value) 76- 80 F5.3 --- gammaext Strength of external shear 82- 86 F5.3 --- E_gammaext Strength of external shear error (upper value) 88- 92 F5.3 --- e_gammaext Strength of external shear error (lower value) 94- 96 I3 deg phiext Angle of external shear 98- 99 I2 deg E_phiext Angle of external shear error (upper value) 101-102 I2 deg e_phiext Angle of external shear error (lower value) -------------------------------------------------------------------------------- Note (1): * for the parameters for our best fits, i.e. for a manually-customized mask, when applicable. -------------------------------------------------------------------------------- Byte-by-byte Description of file: mergers.dat rings.dat spirals.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Name Candidate identifier (UNIONS JHHMMSS+SSMMSS) 23- 24 I2 h RAh Right ascension (J2000) 26- 27 I2 min RAm Right ascension (J2000) 29- 30 I2 s RAs Right ascension (J2000) 32 A1 --- DE- Declination sign (J2000) 33- 34 I2 deg DEd Declination (J2000) 36- 37 I2 arcmin DEm Declination (J2000) 39- 40 I2 arcsec DEs Declination (J2000) -------------------------------------------------------------------------------- Acknowledgements: Elodie Savary, elodie.savary(at)epfl.ch
(End) Patricia Vannier [CDS] 22-Jun-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line