J/A+A/664/A65 Early-M dwarfs occurrence rates (Pinamonti+, 2022)
HADES RV Programme with HARPS-N at TNG.
XV. Planetary occurrence rates around early-M dwarfs.
Pinamonti M., Sozzetti A., Maldonado J., Affer L., Micela G., Bonomo A.S.,
Lanza A.F., Perger M., Ribas I., Gonzalez Hernandez J.I., Bignamini A.,
Claudi R., Covino E., Damasso M., Desidera S., Giacobbe P.,
Gonzalez-Alvarez E., Herrero E., Leto G., Maggio A., Molinari E.,
Morales J.C., Pagano I., Petralia A., Piotto G., Poretti E., Rebolo R.,
Scandariato G., Suarez Mascareno A., Toledo-Padron B., Zanmar Sanchez R.
<Astron. Astrophys. 664, A65 (2022)>
=2022A&A...664A..65P 2022A&A...664A..65P (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Stars, late-type ; Spectroscopy ;
Exoplanets ; Optical
Keywords: techniques: radial velocities - stars: low-mass - stars: activity -
methods: statistical - planets and satellites: detection
Abstract:
We present the complete Bayesian statistical analysis of the HArps-n
red Dwarf Exoplanet Survey (HADES), which monitored the radial
velocities of a large sample of M dwarfs with HARPS-N at TNG, over the
last 6 years.
The targets were selected in a narrow range of spectral types from M0
to M3, 0.3M☉<M*<0.71M☉, in order to study the planetary
population around a well-defined class of host stars. We take
advantage of Bayesian statistics to derive an accurate estimate of the
detectability function of the survey. Our analysis also includes the
application of Gaussian Process approach to take into account stellar
activity induced radial velocity variations, and improve the detection
limits, around the most-observed and most-active targets. The Markov
chain Monte Carlo and Gaussian process technique we apply in this
analysis has proven very effective in the study of M-dwarf planetary
systems, helping the detection of most of the HADES planets.
From the detectability function we can calculate the occurrence rate
of small mass planets around early-M dwarfs, either taking into
account only the 11 already published HADES planets or adding also the
5 new planetary candidates discovered in this analysis, and compare
them with the previous estimates of planet occurrence around M-dwarf
or Solar-type stars: considering only the confirmed planets, we find
the highest frequency for low-mass planets
(1M{earth}<mpsini<10M{earth}) with periods 10d<P< 100d,
focc=85+5-19%, while for short-period planets (1d<P<10d) we
find a frequency of focc=10.3+8.4-3.3%, significantly lower
than for later-M dwarfs; if instead we take into account also the new
candidates, we observe the same general behaviours, but with
consistently higher frequencies of low-mass planets. We also present
new estimates of the occurrence rates of long-period giant planets and
temperate planets inside the Habitable Zone of early-M dwarfs: in
particular we find that the frequency of habitable planets could be as
low as eta_{earth}<17.1%. These results, and their comparison with
other surveys focused on different stellar types, confirms the central
role that stellar mass plays in the formation and evolution of
planetary systems.
Description:
File hades.dat provides the observational data collected with the
HARPS-N spectrograph for all the HADES targets, and used in the
present study.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
stars.dat 61 56 List of studied stars
hades.dat 148 4312 Observational HADES data
--------------------------------------------------------------------------------
See also:
J/A+A/593/A117 : GJ 3998 RVs, S and Halpha indexes (Affer+, 2016)
J/A+A/598/A26 : HADES RV Programme with HARPS-N at TNG. II. (Perger+, 2017)
J/A+A/605/A92 : GJ 625 HARPS-N data (Suarez Mascareno+, 2017)
J/A+A/608/A63 : HADES VI. GJ 3942b activity with HARPS-N (Perger+, 2017)
J/A+A/622/A193 : Gl686 RV curves and BVR photometry (Affer+, 2019)
J/A+A/644/A68 : Abundance signature of M dwarf stars (Maldonado+, 2020)
J/A+A/651/A93 : A candidate super-Earth orbiting GJ 9689 (Maldonado+, 2021)
Byte-by-byte Description of file: stars.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 15 A15 --- Target Target identifier
18- 19 I2 h RAh Simbad right ascension (J2000)
21- 22 I2 min RAm Simbad right ascension (J2000)
24- 28 F5.2 s RAs Simbad right ascension (J2000)
30 A1 --- DE- Simbad declination (J2000)
31- 32 I2 deg DEd Simbad declination (J2000)
34- 35 I2 arcmin DEm Simbad declination (J2000)
37- 40 F4.1 arcsec DEs Simbad declination (J2000)
43- 45 I3 --- Nobs Number of measurements in hades.dat
47- 61 A15 --- SName Simbad name
--------------------------------------------------------------------------------
Byte-by-byte Description of file: hades.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 15 A15 --- Target Target identifier
17- 28 F12.6 d BJD Observation date (BJD-2400000)
30- 40 F11.6 m/s RV Radial Velocity
42- 52 F11.6 m/s e_RV Uncertainty on radial velocity
54- 64 F11.6 --- CaII Activity CaII index
66- 76 F11.6 --- e_CaII Uncertainty on CaII index
78- 88 F11.6 --- Halpha Activity Halpha index
90-100 F11.6 --- e_Halpha Uncertainty on Halpha index
102-112 F11.6 --- NaI Activity NaI index
114-124 F11.6 --- e_NaI Uncertainty on NaI index
126-136 F11.6 --- HeI Activity HeI index
138-148 F11.6 --- e_HeI Uncertainty on HeI index
--------------------------------------------------------------------------------
Acknowledgements:
Matteo Pinamonti, matteo.pinamonti(at)inaf.it
References:
Affer et al., Paper I 2016A&A...593A.117A 2016A&A...593A.117A, Cat. J/A+A/593/A117
Perger et al., Paper II 2017A&A...598A..26P 2017A&A...598A..26P, Cat. J/A+A/598/A26
Maldonado et al. Paper III 2017A&A...598A..27M 2017A&A...598A..27M
Scandariato et al., Paper IV 2017A&A...598A..28S 2017A&A...598A..28S
Suarez Mascareno et al., Paper V 2017A&A...605A..92S 2017A&A...605A..92S, Cat. J/A+A/605/A92
Perger et al., Paper VI 2017A&A...608A..63P 2017A&A...608A..63P, Cat. J/A+A/608/A63
Mascareno et al., Paper VII 2018A&A...612A..89M 2018A&A...612A..89M
Pinamonti et al., Paper VIII 2018A&A...617A.104P 2018A&A...617A.104P
Affer et al., Paper IX 2019A&A...622A.193A 2019A&A...622A.193A, Cat. J/A+A/622/A193
Gonzalez-Alvarez et al., Paper X 2019A&A...624A..27G 2019A&A...624A..27G
Pinamonti et al., Paper XI 2019A&A...625A.126P 2019A&A...625A.126P
Maldonado et al., Paper XII 2020A&A...644A..68M 2020A&A...644A..68M, Cat. J/A+A/644/A68
Gonzalez-Alvarez et al., Paper XIII 2021A&A...649A.157G 2021A&A...649A.157G
Maldonado et al., Paper XIV 2021A&A...651A..93M 2021A&A...651A..93M, Cat. J/A+A/651/A93
(End) Matteo Pinamonti [INAF-OATO, Italy], Patricia Vannier [CDS] 13-Mar-2022