J/A+A/664/A47 Near-infrared and optical emission of WASP-5 b (Kovacs+, 2022)
Near-infrared and optical emission of WASP-5 b.
Kovacs G., Dekany I., Karamiqucham B., Chen G., Zhou G., Rabus M., Kovacs T.
<Astron. Astrophys. 664, A47 (2022)>
=2022A&A...664A..47K 2022A&A...664A..47K (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Infrared ; Optical
Keywords: planets and satellites: gaseous planets -
planets and satellites: atmospheres -
planets and satellites: detection
Abstract:
Thermal emission from extrasolar planets makes it possible to study
important physical processes in their atmospheres and derive more
precise orbital elements.
By using new near-infrared (NIR) and optical data, we examine how
these data constrain the orbital eccentricity and the thermal
properties of the planet atmosphere.
The full light curves acquired by the TESS satellite from two sectors
are used to put an upper limit on the amplitude of the phase variation
of the planet and estimate the occultation depth. Two previously
published observations and one followup observation (published herein)
in the 2MASS K (Ks) band are employed to derive a more precise
occultation light curve in this NIR waveband.
The merged occultation light curve in the Ks band comprises 4515 data
points. The data confirm the results of the earlier eccentricity
estimates, suggesting a circular orbit of: e=0.005±0.015. The high
value of the flux depression of (2.70±0.14)ppt in the Ks band
excludes simple black body emission at the 10 sigma level and also
disagrees with current atmospheric models at the (4-7) sigma level.
From analysis of the TESS data, in the visual band we find tentative
evidence for a near-noise-level detection of the secondary eclipse,
and place constraints on the associated amplitude of the phase
variation of the planet. A formal box fit yields an occultation depth
of (0.157±0.056)ppt. This implies a relatively high geometric
albedo of Ag=0.43±0.15 for fully efficient atmospheric circulation
and Ag=0.29±0.15 for no circulation at all. No preference can be
seen for either the oxygen-enhanced or the carbon-enhanced atmosphere
models.
Description:
These are the 2MASS K (Ks) observations of the three occultation
events of WASP-5 b as presented in the paper.
Objects:
---------------------------------------------------
RA (2000) DE Designation(s)
---------------------------------------------------
23 57 23.76 -41 16 37.7 WASP-5 = TIC 184240683
---------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
c1s1_cds.dat 101 2084 *WASP-5 fluxes (with 22 header lines)
c1s2_cds.dat 101 2084 *Comparison star 2 fluxes (with 22 header lines)
c1s3_cds.dat 101 2084 *Comparison star 3 fluxes (with 22 header lines)
c1s4_cds.dat 101 2084 *Comparison star 4 fluxes (with 22 header lines)
ks_mf.dat 48 4515 *Merged/folded LC (with 18 header lines)
ks_mfb.dat 44 80 *Binned LC (with 23 header lines)
--------------------------------------------------------------------------------
Note on *.dat: All files have detailed description in their comment lines
(above the headers) to aid full understanding of their content.
Headers and comment lines start with hashmark.
--------------------------------------------------------------------------------
See also:
J/MNRAS/396/1023 : Transiting planetary system WASP-5 (Southworth+, 2009)
Byte-by-byte Description of file (#): c1s?_cds.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 F13.5 d BJD Barycentric Julian date (BJD_TDB)
15- 22 F8.3 pix X X coordinate of the photocenter of WASP-5
24- 31 F8.3 pix Y Y coordinate of the photocenter of WASP-5
34- 39 I6 --- Fap1 Ks flux for aperture 1 (in ADU unit)
42- 45 I4 --- e_Fap1 Ks flux error for aperture 1 (in ADU unit)
48- 53 I6 --- Fap2 Ks flux for aperture 2 (in ADU unit)
56- 59 I4 --- e_Fap2 Ks flux error for aperture 2 (in ADU unit)
62- 67 I6 --- Fap3 Ks flux for aperture 3 (in ADU unit)
70- 73 I4 --- e_Fap3 Ks flux error for aperture 3 (in ADU unit)
76- 81 I6 --- Fap4 Ks flux for aperture 4 (in ADU unit)
84- 87 I4 --- e_Fap4 Ks flux error for aperture 4 (in ADU unit)
90- 95 I6 --- Fap5 Ks flux for aperture 5 (in ADU unit)
98-101 I4 --- e_Fap5 Ks flux error for aperture 5 (in ADU unit)
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): ks_mf.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 10 F8.6 --- Phase Secondary eclipse phase
14- 21 F8.6 --- Flux Normalized Ks flux (=1.0 outside the eclipse)
25- 32 F8.6 --- Tras Trapezoidal fits to the individual datasets
36- 43 F8.6 --- Trag Global trapezoidal model fit to all datasets
48 I1 --- Source Individual data source label
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): ks_mfb.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 10 F8.6 --- Phase Secondary eclipse phase
13- 20 F8.6 --- <Flux> Bin average of the fluxes from all datasets
23- 30 F8.6 --- e_<Flux> Error of <Flux>
33- 40 F8.6 --- TrA Bin average of the nightly transit fits
44 I1 --- Id [1/2] Bin shift index (see paper)
--------------------------------------------------------------------------------
Acknowledgements:
Geza Kovacs, kovageza(at)gmail.com
(End) Patricia Vannier [CDS] 09-May-2022