J/A+A/663/A142      GAPS programme at TNG. XXXIV.             (Maldonado+, 2022)

The GAPS programme at TNG. XXXIV. Activity-rotation, flux-flux relationships, and active region evolution through stellar age. Maldonado J., Colombo S., Petralia A., Benatti S., Desidera S., Malavolta L., Lanza A.F., Damasso M., Micela G., Mallonn M., Messina S., Sozzetti A., Stelzer B., Biazzo K., Gratton R., Maggio A., Nardiello D., Scandariato G., Affer L., Baratella M., Claudi R., Molinari E., Bignamini A., Covino E., Pagano I., Piotto G., Poretti E., Cosentino R., Carleo I. <Astron. Astrophys. 663, A142 (2022)> =2022A&A...663A.142M 2022A&A...663A.142M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, fundamental Keywords: stars: activity - stars: chromospheres - stars: rotation Abstract: Active region evolution plays an important role in the generation and variability of magnetic fields on the surface of lower main-sequence stars. However, determining the lifetime of active region growth and decay as well as their evolution is a complex task. Most previous studies of this phenomenon are based on optical light curves, while little is known about the chromosphere and the transition region. We aim to test whether the lifetime for active region evolution shows any dependency on the stellar parameters, specially on the stellar age. We identify a sample of stars with well-defined ages via their kinematics and membership to young stellar associations and moving groups. We made use of high-resolution echelle spectra from HARPS at La Silla 3.6m-telescope and HARPS-N at TNG to compute rotational velocities, activity levels, and emission excesses. We use these data to revisit the activity-rotation-age relationship. The time-series of the main optical activity indicators, namely CaII H & K, Balmer lines, NaI D1, D2, and HeI D3, % and use the were analysed together with the available photometry by using state-of-the-art Gaussian processes to model the stellar activity of these stars. Autocorrelation functions of the available photometry were also analysed. We use the derived lifetimes for active region evolution to search for correlations with the stellar age, the spectral type, and the level of activity. We also use the pooled variance technique to characterise the activity behaviour of our targets. Our analysis confirms the decline of activity and rotation as the star ages. We also confirm that the rotation rate decays with age more slowly for cooler stars and that, for a given age, cooler stars show higher levels of activity. We show that F- and G-type young stars early-type (F,G) young stars also depart from the inactive stars in the flux-flux relationship. The gaussian process analysis of the different activity indicators does not seem to provide any useful information on active region's lifetime and evolution. On the other hand, active region's lifetimes derived from the light-curve analysis might correlate with the stellar age and temperature. Although we caution the small number statistics, our results suggest that active regions seem to live longer on younger, cooler, and more active stars. Description: Table C1 lists the Galactic-spatial velocity components and membership to stellar kinematic groups and associations. Table C2 provides the derived properties of the stars. Table C3 gives the emission excess. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablec1.dat 80 129 Galactic-spatial velocity components and membership to stellar kinematic groups and associations tablec2.dat 121 129 Derived properties of the stars tablec3.dat 51 71 Emission excess in the Ca II H, Ca II K, and Hα lines -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Star Star identifier 23- 29 F7.2 [km/s] U ? Galactic-spatial velocity U 31- 34 F4.2 [km/s] e_U ? Uncertainty on U 36- 41 F6.2 [km/s] V ? Galactic-spatial velocity V 43- 46 F4.2 [km/s] e_V ? Uncertainty on V 48- 53 F6.2 [km/s] W ? Galactic-spatial velocity W 55- 58 F4.2 [km/s] e_W ? Uncertainty on W 60- 66 A7 -- Assoc Stellar association (1) 68- 74 A7 -- Hyp Best hypothesis for stellar group or association membership (1) 75- 80 F6.4 -- Prob Probability for stellar group or association membership -------------------------------------------------------------------------------- Note (1): Associations as follows: TUC = Tucana-Horologium PLE = Pleiades CBER = Coma Berenices PRAE = Praesepe (M44) HYA = Hyades UMa = Ursa Major HL = Hercules-Lyra BPIC = Beta Pic USCO = Upper Sco -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Star Star identifier 23- 27 I5 Myr Age Stellar age 29- 32 I4 K Teff ? Effective temperature 34- 36 I3 K e_Teff ? Uncertainty on Teff 38- 41 F4.2 mag B-V Colour index (B-V) 43- 48 F6.3 --- log(R'HK) ? Activity index derived from the CaII H+K lines 50- 54 F5.3 --- e_log(R'HK) ? Uncertainty on log(R'HK) 56- 60 F5.2 km/s vsini ? Projected rotational velocity 62- 65 F4.2 km/s e_vsini ? Uncertainty on vsini 67- 71 F5.3 Msun Mass ? Stellar mass 73- 77 F5.3 Msun e_Mass ? Uncertainty on Mass 79- 82 F4.2 Rsun Radius ? Stellar radius 84- 87 F4.2 Rsun e_Radius ? Uncertainty on Radius 89- 93 F5.3 Lsun Lum ? Stellar luminosity 95- 99 F5.3 Lsun e_Lum ? Uncertainty on Luminosity 101-106 F6.2 d tauconv ? Turnover convective timescale 108-110 I3 --- Nobs Number of observations 112-117 F6.3 yr Tspan ? Time span of the observations 119-121 I3 --- SNR Mean signal-to-noise ratio -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 21 A21 --- Star Star identifier 23- 26 F4.2 [mW/m2] logF(H) ? CaII H excess emission flux (log) 28- 31 F4.2 [mW/m2] e_logF(H) ? Uncertainty on F(H) 33- 36 F4.2 [mW/m2] logF(K) ? CaII K excess emission flux (log) 38- 41 F4.2 [mW/m2] e_logF(K) ? Uncertainty on F(K) 43- 46 F4.2 [mW/m2] logF(Ha) ? Hα excess emission flux (log) 48- 51 F4.2 [mW/m2] e_logF(Ha) ? Uncertainty on F(Ha) -------------------------------------------------------------------------------- Acknowledgements: Jesus Maldonado, jesus.maldonado(at)inaf.it References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110 Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34 Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5 Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50 Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B Di Maio et al., Paper XXVI 2020A&A...642A..53D 2020A&A...642A..53D Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133 Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S, Cat. J/A+A/646/A159 Rainer Et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F
(End) Jesus Maldonado [INAF-OAPa, Italy], Patricia Vannier [CDS] 28-Apr-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line