J/A+A/663/A142 GAPS programme at TNG. XXXIV. (Maldonado+, 2022)
The GAPS programme at TNG. XXXIV. Activity-rotation, flux-flux relationships,
and active region evolution through stellar age.
Maldonado J., Colombo S., Petralia A., Benatti S., Desidera S.,
Malavolta L., Lanza A.F., Damasso M., Micela G., Mallonn M., Messina S.,
Sozzetti A., Stelzer B., Biazzo K., Gratton R., Maggio A., Nardiello D.,
Scandariato G., Affer L., Baratella M., Claudi R., Molinari E.,
Bignamini A., Covino E., Pagano I., Piotto G., Poretti E., Cosentino R.,
Carleo I.
<Astron. Astrophys. 663, A142 (2022)>
=2022A&A...663A.142M 2022A&A...663A.142M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, fundamental
Keywords: stars: activity - stars: chromospheres - stars: rotation
Abstract:
Active region evolution plays an important role in the generation and
variability of magnetic fields on the surface of lower main-sequence
stars. However, determining the lifetime of active region growth and
decay as well as their evolution is a complex task. Most previous
studies of this phenomenon are based on optical light curves, while
little is known about the chromosphere and the transition region. We
aim to test whether the lifetime for active region evolution shows any
dependency on the stellar parameters, specially on the stellar age. We
identify a sample of stars with well-defined ages via their kinematics
and membership to young stellar associations and moving groups. We
made use of high-resolution echelle spectra from HARPS at La Silla
3.6m-telescope and HARPS-N at TNG to compute rotational velocities,
activity levels, and emission excesses. We use these data to revisit
the activity-rotation-age relationship. The time-series of the main
optical activity indicators, namely CaII H & K, Balmer lines, NaI
D1, D2, and HeI D3, % and use the were analysed together with
the available photometry by using state-of-the-art Gaussian processes
to model the stellar activity of these stars. Autocorrelation
functions of the available photometry were also analysed. We use the
derived lifetimes for active region evolution to search for
correlations with the stellar age, the spectral type, and the level of
activity. We also use the pooled variance technique to characterise
the activity behaviour of our targets. Our analysis confirms the
decline of activity and rotation as the star ages. We also confirm
that the rotation rate decays with age more slowly for cooler stars
and that, for a given age, cooler stars show higher levels of
activity. We show that F- and G-type young stars early-type (F,G)
young stars also depart from the inactive stars in the flux-flux
relationship. The gaussian process analysis of the different activity
indicators does not seem to provide any useful information on active
region's lifetime and evolution. On the other hand, active region's
lifetimes derived from the light-curve analysis might correlate with
the stellar age and temperature. Although we caution the small number
statistics, our results suggest that active regions seem to live
longer on younger, cooler, and more active stars.
Description:
Table C1 lists the Galactic-spatial velocity components and
membership to stellar kinematic groups and associations.
Table C2 provides the derived properties of the stars.
Table C3 gives the emission excess.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablec1.dat 80 129 Galactic-spatial velocity components and
membership to stellar kinematic groups and
associations
tablec2.dat 121 129 Derived properties of the stars
tablec3.dat 51 71 Emission excess in the Ca II H, Ca II K, and
Hα lines
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablec1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 21 A21 --- Star Star identifier
23- 29 F7.2 [km/s] U ? Galactic-spatial velocity U
31- 34 F4.2 [km/s] e_U ? Uncertainty on U
36- 41 F6.2 [km/s] V ? Galactic-spatial velocity V
43- 46 F4.2 [km/s] e_V ? Uncertainty on V
48- 53 F6.2 [km/s] W ? Galactic-spatial velocity W
55- 58 F4.2 [km/s] e_W ? Uncertainty on W
60- 66 A7 -- Assoc Stellar association (1)
68- 74 A7 -- Hyp Best hypothesis for stellar group or
association membership (1)
75- 80 F6.4 -- Prob Probability for stellar group or
association membership
--------------------------------------------------------------------------------
Note (1): Associations as follows:
TUC = Tucana-Horologium
PLE = Pleiades
CBER = Coma Berenices
PRAE = Praesepe (M44)
HYA = Hyades
UMa = Ursa Major
HL = Hercules-Lyra
BPIC = Beta Pic
USCO = Upper Sco
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablec2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 21 A21 --- Star Star identifier
23- 27 I5 Myr Age Stellar age
29- 32 I4 K Teff ? Effective temperature
34- 36 I3 K e_Teff ? Uncertainty on Teff
38- 41 F4.2 mag B-V Colour index (B-V)
43- 48 F6.3 --- log(R'HK) ? Activity index derived from the
CaII H+K lines
50- 54 F5.3 --- e_log(R'HK) ? Uncertainty on log(R'HK)
56- 60 F5.2 km/s vsini ? Projected rotational velocity
62- 65 F4.2 km/s e_vsini ? Uncertainty on vsini
67- 71 F5.3 Msun Mass ? Stellar mass
73- 77 F5.3 Msun e_Mass ? Uncertainty on Mass
79- 82 F4.2 Rsun Radius ? Stellar radius
84- 87 F4.2 Rsun e_Radius ? Uncertainty on Radius
89- 93 F5.3 Lsun Lum ? Stellar luminosity
95- 99 F5.3 Lsun e_Lum ? Uncertainty on Luminosity
101-106 F6.2 d tauconv ? Turnover convective timescale
108-110 I3 --- Nobs Number of observations
112-117 F6.3 yr Tspan ? Time span of the observations
119-121 I3 --- SNR Mean signal-to-noise ratio
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablec3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 21 A21 --- Star Star identifier
23- 26 F4.2 [mW/m2] logF(H) ? CaII H excess emission flux (log)
28- 31 F4.2 [mW/m2] e_logF(H) ? Uncertainty on F(H)
33- 36 F4.2 [mW/m2] logF(K) ? CaII K excess emission flux (log)
38- 41 F4.2 [mW/m2] e_logF(K) ? Uncertainty on F(K)
43- 46 F4.2 [mW/m2] logF(Ha) ? Hα excess emission flux (log)
48- 51 F4.2 [mW/m2] e_logF(Ha) ? Uncertainty on F(Ha)
--------------------------------------------------------------------------------
Acknowledgements:
Jesus Maldonado, jesus.maldonado(at)inaf.it
References:
Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28
Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D
Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E
Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D
Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111
Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15
Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64
Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136
Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D
Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135
Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118
Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90
Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E
Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107
Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G
Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41
Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155
Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110
Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34
Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P
Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5
Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G
Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50
Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B
Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B
Di Maio et al., Paper XXVI 2020A&A...642A..53D 2020A&A...642A..53D
Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133
Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C
Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S, Cat. J/A+A/646/A159
Rainer Et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R
Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B
Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F
(End) Jesus Maldonado [INAF-OAPa, Italy], Patricia Vannier [CDS] 28-Apr-2022