J/A+A/660/A59 SAGAN III. New insights into giant radio quasars (Mahato+, 2022)
Search and analysis of giant radio galaxies with associated nuclei (SAGAN).
III. New insights into giant radio quasars.
Mahato M., Dabhade P., Saikia D.J., Combes F., Bagchi J., Ho L.C.,
Raychaudhury S.
<Astron. Astrophys. 660, A59 (2022)>
=2022A&A...660A..59M 2022A&A...660A..59M (SIMBAD/NED BibCode)
ADC_Keywords: QSOs ; Active gal. nuclei ; Radio sources
Keywords: galaxies: jets - galaxies: active - radio continuum: galaxies -
quasars: general
Abstract:
Giant radio quasars (GRQs) are radio-loud active galactic nuclei
(AGNs), propelling megaparsec-scale jets. In order to understand GRQs
and their properties, we have compiled all known GRQs ("the GRQ
catalogue"), and a subset of small (size <700kpc) radio quasars
(SRQs) from the literature. In this process, we have found 10 new
FR-II GRQs, in the redshift range of 0.66<z<1.72, which we include
in the GRQ catalogue. Using the above samples, we have carried out a
systematic comparative study of GRQs and SRQs, using optical and radio
data. Our results show that the GRQs and SRQs statistically have
similar spectral index and black hole mass distributions. However,
SRQs have higher radio core power, core dominance factor, total radio
power, jet kinetic power and Eddington ratio compared to GRQs. On the
other hand, when compared to giant radio galaxies (GRGs), GRQs have
higher black hole mass and Eddington ratio. The high core dominance
factor of SRQs is an indicator of them lying closer to the line of
sight than GRQs. We also find a correlation of the accretion disc
luminosity with the radio core and jet power of GRQs, which provides
evidence for disc-jet coupling. Lastly, we find the distributions of
Eddington ratios of GRGs and GRQs to be bi-modal, similar to that
found in small radio galaxies (SRGs) and SRQs, which indicate that
size is not strongly dependent on the accretion state. Using all of
these, we provide a basic model for the growth of SRQs to GRQs.
Description:
The GRQ catalogue is the compendium of all the GRQs reported in the
literature and our new GRQ sample. It consists of 265 sources, out
of which 121 are from the GRG catalogue in SAGAN.I (Dabhade et al.
2020b), 134 are from KJ21, and 10 are the new GRQs reported in this
paper.
In order to compare the properties of GRQs with SRQs, one needs to
create a robust SRQ catalogue (size <700kpc). Hence, we compiled a
sample of SRQs from the catalogue of Kimball et al. (2011, Cat.
J/AJ/141/182)
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
grq265.dat 186 265 GRQ (giant radio quasars) catalog
rq422.dat 167 422 Radio quasar (RQ) catalog from Kimball et al.
(2011, Cat. J/AJ/141/182) after refinement
--------------------------------------------------------------------------------
See also:
J/AJ/141/182 : Radio and optical properties of QSOs (Kimball+, 2011)
J/ApJS/249/17 : SDSS QSO DR14 spectral properties (Rakshit+, 2020)
J/A+A/642/A153 : SAGAN. I. New sample + multi-wavelength studies
(Dabhade+, 2020)
Byte-by-byte Description of file: grq265.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq Sequential number
5- 16 F12.8 deg RAdeg Right ascension (J2000)
18- 31 F14.10 deg DEdeg Declination (J2000)
33- 42 F10.8 --- z Redshift
44- 56 F13.6 Mpc DL Luminosity distance
58- 68 F11.6 Mpc Dc Comoving distance
70- 74 F5.2 arcmin ASize Angular size
76- 79 F4.2 Mpc Size Linear size
81- 89 E9.3 W/Hz Pcore ?=- Core radio power at 1400MHz
91- 97 F7.4 --- CDF ?=- Core dominance factor
99-103 F5.2 --- SI ?=- Spectral index alpha
105-113 E9.3 10-7W Qjet ?=- Jet kinetic power
115-123 E9.3 W/Hz P1400 ?=- Total radio power at 1400MHz
125-135 I11 Msun MBH ?=- Black hole mass
137-146 I10 Msun e_MBH ?=- Black hole mass error
148-153 F6.2 % e_MBHp ?=- Black hole mass error in percent
155-158 I4 --- q_MBH ?=- MBH estimate quality code from
Rakshit et al. (2020, Cat. J/ApJS/249/17)
160-168 E9.3 10-7W Ledd ?=- Eddington luminosity
170-178 E9.3 10-7W Lbol ?=- Bolometric luminosity
180-186 F7.5 --- ER ?=- Eddington ratio
--------------------------------------------------------------------------------
Byte-by-byte Description of file: rq422.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq Sequential number
5- 15 F11.7 deg RAdeg Right ascension (J2000)
17- 27 F11.7 deg DEdeg Declination (J2000)
29- 35 F7.5 --- z Redshift
37- 48 F12.6 Mpc DL Light distance
50- 60 F11.6 Mpc DC Center distance
62- 70 E9.3 W/Hz Pcore Core radio power at 1400MHz
72- 78 F7.3 --- CDF ?=- Core dominance factor
80- 84 F5.2 --- SI ?=- Spectral index alpha
86- 94 E9.3 10-7W Qjet ?=- Jet kinetic power
96-104 E9.3 10-7W P1400 ?=- Total radio power at 1400MHz
106-116 I11 Msun MBH ?=- Black hole mass
118-127 I10 Msun e_MBH ?=- Black hole mass error
129-134 F6.2 % e_MBHp ?=- Black hole mass error in percent
136-137 I2 --- q_MBH ?=- MBH estimate quality code from Rakshit
et al (2020, Cat. J/ApJS/249/17)
139-147 E9.3 10-7W Ledd ?=- Eddington luminosity
149-157 E9.3 10-7W Lbol ?=- Bolometric luminosity
159 I1 --- q_Lbol ?=- Lbol quality code from Rakshit et al.
(2020, Cat. J/ApJS/249/17)
161-167 F7.5 --- ER ?=- Eddington ratio
--------------------------------------------------------------------------------
Acknowledgements:
Pratik Dabhade, pratikdabhade13(at)gmail.com
References:
Dabhade et al., Paper I 2020A&A...642A.153D 2020A&A...642A.153D, Cat. J/A+A/642/A153
Dabhade et al., Paper II 2020A&A...643A.111D 2020A&A...643A.111D
(End) Patricia Vannier [CDS] 12-Mar-2022