J/A+A/659/A40       Evolving dark matter profiles since z≤1     (Sharma+, 2022)

Observational evidence of evolving dark matter profiles since z≤1. Sharma G., Salucci P., van de Ven G. <Astron. Astrophys. 659, A40 (2022)> =2022A&A...659A..40S 2022A&A...659A..40S (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Morphology Keywords: galaxies: high-redshift - galaxies: evolution - galaxies: halos - dark matter - galaxies: kinematics and dynamics Abstract: In the concordance cosmological scenario, the cold collisionless dark matter component dominates the mass budget of galaxies and interacts with baryons only via gravity. However, there is growing evidence that the former, instead, responds to the baryonic (feedback) processes by modifying its density distribution. These processes can be captured by comparing the inner dynamics of galaxies across cosmic time. We present a pilot study of dynamical mass modeling of high redshift galaxy rotation curves, which is capable of constraining the structure of dark matter halos across cosmic time. We investigate the dark matter halos of 256 star-forming disk-like galaxies at z∼1 using the KMOS Redshift One Spectroscopic Survey (KROSS). This sample covers the redshifts 0.6≤z≤1.04, effective radii 0.69≤Re[kpc]≤7.76, and total stellar masses 8.7≤log(Mstar [M])≤11.32. We present a mass modeling approach to study the rotation curves of these galaxies, which allow us to dynamically calculate the physical properties associated with the baryons and the dark matter halo. For the former we assume a Freeman disk, while for the latter we employ the NFW (cusp) and the Burkert (cored) halo profiles, separately. At the end, we compare the results of both cases with state-of-the-art galaxy simulations (EAGLE, TNG100, and TNG50). We find that the "cored" dark matter halo emerged as the dominant quantity from a radius 1-3 times the effective radius. Its fraction to the total mass is in good agreement with the outcome of hydrodynamical galaxy simulations. Remarkably, we found that the dark matter core of z∼1 star-forming galaxies are smaller and denser than their local counterparts. Dark matter halos have gradually expanded over the past 6.5Gyrs. That is, observations are capable of capturing the dark matter response to the baryonic processes, thus giving us the first piece of empirical evidence of "gravitational potential fluctuations" in the inner region of galaxies that can be verified with deep surveys and future missions. Description: In Sharma et al. (2021MNRAS.503.1753S 2021MNRAS.503.1753S, Cat. J/MNRAS/503/1753), we used KMOS Redshift One Spectroscopic Survey (KROSS, Harrison et al., 2017, Cat. J/MNRAS/467/1965) data to derive the kinematics of a large sample of star-forming disk-like galaxies at z∼1. Here, We investigate the kinematics of our same star-forming disk-like galaxies from z∼1 and dynamically mass-model their rotation curves. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog1.dat 242 225 Physical parameters of galaxies catalog2.dat 361 136 Individual rotation curve mass modelling with Burkert Halo catalog3.dat 361 136 Individual rotation curve mass modelling with NFW Halo catalog4.dat 356 16 Coadded rotation curve mass modelling with Burkert Halo catalog5.dat 356 16 Coadded rotation curve mass modelling with NFW Halo -------------------------------------------------------------------------------- See also: J/MNRAS/467/1965 : KMOS Redshift One Spectroscopic Survey (Harrison+, 2017) J/MNRAS/503/1753 : z∼1 star-forming galaxies catalo (Sharma+, 2021) Byte-by-byte Description of file: catalog1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- KID KROSS ID (Harrison et al., 2017, Cat. J/MNRAS/467/1965) (KID) 5- 26 A22 --- Name Name of the Object in KROSS catalog (Name) 28- 35 F8.6 --- z Redshift of the Universe (Redshift) 37- 43 F7.4 deg inc Inclination angle (INC) 45- 52 F8.6 kpc Re Effective radius (Re) 54- 61 F8.6 kpc e_Re Effective radius (Re_err) 63- 71 F9.5 km/s Ve Circular velocity computed at effective radius (Ve) 73- 82 F10.6 km/s e_Ve Circular velocity computed at effective radius error (Ve_err) 84- 92 F9.5 km/s Vopt Circular velocity computed at optical radius error (Vopt) 94-103 F10.6 km/s e_Vopt Circular velocity computed at optical radius error (Vopt_err) 105-113 F9.5 km/s Vout Circular velocity computed at Rout (1.5 times the optical radius) (Vout) 115-124 F10.6 km/s e_Vout Circular velocity computed at Rout (1.5 times the optical radius) error (Vout_err) 126-137 E12.6 Msun Mstar Stellar mass (Mstar) 139-150 E12.6 Msun e_Mstar Stellar mass error (Mstar_err) 152-163 E12.6 Msun MH2 H2 gas mass (MH2) 165-176 E12.6 Msun e_MH2 H2 gas mass error (MH2_err) 178-189 E12.6 Msun MHI HI gas mass (MHI) 191-202 E12.6 Msun e_MHI HI gas mass error (MHI_err) 204-212 F9.6 --- Rot/Disp Rotation to dispersion ratio (intrinsic velocity divide by velocity dispersion) (RotDispratio_int) 214-221 F8.6 [kpc] log(Rgas) H2 gas disk radius (log(Rgas)) 223-230 F8.6 [kpc] log(e_Rgas) H2 gas disk radius error (log(Rgas_err)) 232-233 A2 --- RoutFlag [F ok] Rout flag (Rout_Flag) (1) 235-236 A2 --- MstarFlag [F ok] Mstar flag (Mstar_flag) (2) 238-239 A2 --- WiggleFlag [F ok] Wiggle flag (Wiggle_Flag) (3) 241-242 A2 --- RgasFlag [F ok] Rgas flag (Rgas_flag) (4) -------------------------------------------------------------------------------- Note (1): If 'ok' then rotation curve covers the Rout, if 'F' then not and hence circular velocity is extrapolated at Rout. Note (2): If 'F' then Photometric stellar masses are more than allowed by total dynamics (i.e. rotation curve)., otherwise 'ok' Note (3): if 'F' then rotation curve is perturbed and removed from the analysis, otherwise 'ok' Note (4): if 'F' then gas mass is unconstrained from MCMC and computed as RH2=2xRe and RHI=6xRe, otherwise 'ok' -------------------------------------------------------------------------------- Byte-by-byte Description of file: catalog2.dat catalog3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 22 A22 --- Name Name of the Object in KROSS catalog (Name) 24- 32 F9.6 [kpc] log(r0/s) Dark matter core/cusp radius, log(r0) (core) in catalog2, log(rs) (cusp) in catalog3 34- 42 F9.6 [kpc] log(e_r0/s) Lower error on log(r0/s) (log(r0_lerr) or log(rs_lerr)) 44- 52 F9.6 [kpc] log(E_r0/s) Upper error on log(r0/s) (log(r0_uerr) or log(rs_uerr)) 54- 61 F8.4 [g/cm3] log(rho0/s) Dark matter core/cusp density, log(rho0) (core) in catalog2, log(rho_s) (cusp) in catalog3 63- 70 F8.4 [g/cm3] log(e_rho0/s) Lower error on log(rho0/s) (log(rho0_lerr) or log(rhoslerr)) 72- 79 F8.4 [g/cm3] log(E_rho0/s) Upper error on log(rho0/s) (log(rho0_uerr) or log(rhosuerr)) 81- 89 F9.6 [kpc] log(Rd) Stellar disk radius (log(Rd)) 91- 99 F9.6 [kpc] log(e_Rd) Lower error on log(Rd) (log(Rd_lerr)) 101-109 F9.6 [kpc] log(E_Rd) Upper error on log(Rd) (log(Rd_uerr)) 111-118 F8.6 [kpc] log(RH2) H2 gas radius (log(RH2)) 120-127 F8.6 [kpc] log(e_RH2) Lower error on log(RH2) (log(RH2_lerr)) 129-136 F8.6 [kpc] log(E_RH2) Upper error on log(RH2) (log(RH2_uerr)) 138-146 F9.6 [Msun] log(Md) Stellar disk mass (log(Md)) 148-156 F9.6 [Msun] log(e_Md) Lower error on log(Md) (log(Md_lerr)) 158-166 F9.6 [Msun] log(E_Md) Upper error on log(Md) (log(Md_uerr)) 168-176 F9.6 [Msun] log(MH2) H2 gas mass (log(MH2)) 178-185 F8.6 [Msun] log(e_MH2) Lower error on log(MH2) (log(MH2_lerr)) 187-195 F9.6 [Msun] log(E_MH2) Upper error on log(MH2) (log(MH2_uerr)) 197-205 F9.6 [Msun] log(MHI) HI gas mass (log(MHI)) 207-215 F9.6 [Msun] log(e_MHI) Lower error on log(MHI) (log(MHI_lerr)) 217-225 F9.6 [Msun] log(E_MHI) Upper error on log(MHI) (log(MHI_uerr)) 227-235 F9.6 [Msun] log(Mbulge) Bulge mass (log(Mbulge)) 237-245 F9.6 [Msun] log(e_Mbulge) Lower error on log(Mbulge) (log(Mbulge_lerr)) 247-255 F9.6 [Msun] log(E_Mbulge) Upper error on log(Mbulge) (log(Mbulge_uerr)) 257-264 F8.6 [kpc] log(Rvir) Virial radius (log(Rvir)) 266-274 F9.6 [kpc] log(e_Rvir) Lower error on log(Rvir) (log(Rvir_lerr)) 276-283 F8.6 [kpc] log(E_Rvir) Upper error on log(Rvir) (log(Rvir_uerr)) 285-293 F9.6 [Msun] log(Mvir) Virial mass (log(Mvir)) 295-303 F9.6 [Msun] log(e_Mvir) Lower error on log(Mvir) (log(Mvir_lerr)) 305-313 F9.6 [Msun] log(E_Mvir) Upper error on log(Mvir) (log(Mvir_uerr)) 315-322 F8.6 [km/s] log(Vvir) Virial velocity (log(Vvir)) 324-332 F9.6 [km/s] log(e_Vvir) Lower error on log(Vvir) (log(Vvir_lerr)) 334-341 F8.6 [km/s] log(E_Vvir) Upper error on log(Vvir) (log(Vvir_uerr)) 343-351 F9.5 km/s Vc Circular velocity (Vc) 353-361 F9.6 km/s e_Vc Error on Vc (Vc_err) -------------------------------------------------------------------------------- Byte-by-byte Description of file: catalog4.dat catalog5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Bin Bin number (Name) 8- 16 F9.6 [kpc] log(r0/s) Dark matter core/cusp radius, log(r0) (core) in catalog4, log(rs) (cusp) in catalog5 18- 26 F9.6 [kpc] log(e_r0/s) Lower error on log(r0/s) (log(r0_lerr) or log(rs_lerr)) 28- 36 F9.6 [kpc] log(E_r0/s) Upper error on log(r0/s) (log(r0_uerr) or log(rs_uerr)) 38- 45 F8.4 [g/cm3] log(rho0/s) Dark matter core/cusp density, log(rho0) (core) in catalog4, log(rho_s) (cusp) in catalog5 47- 54 F8.4 [g/cm3] log(e_rho0/s) Lower error on log(rho0/s) (log(rho0_lerr) or log(rhoslerr)) 56- 63 F8.4 [g/cm3] log(E_rho0/s) Upper error on log(rho0/s) (log(rho0_uerr) or log(rhosuerr)) 65- 73 F9.6 [kpc] log(Rd) Stellar disk radius (log(Rd)) 75- 83 F9.6 [kpc] log(e_Rd) Lower error on log(Rd) (log(Rd_lerr)) 85- 93 F9.6 [kpc] log(E_Rd) Upper error on log(Rd) (log(Rd_uerr)) 95-102 F8.6 [kpc] log(RH2) H2 gas radius (log(RH2)) 104-111 F8.6 [kpc] log(e_RH2) Lower error on log(RH2) (log(RH2_lerr)) 113-120 F8.6 [kpc] log(E_RH2) Upper error on log(RH2) (log(RH2_uerr)) 122-130 F9.6 [Msun] log(Md) Stellar disk mass (log(Md)) 132-140 F9.6 [Msun] log(e_Md) Lower error on log(Md) (log(Md_lerr)) 142-150 F9.6 [Msun] log(E_Md) Upper error on log(Md) (log(Md_uerr)) 152-160 F9.6 [Msun] log(MH2) H2 gas mass (log(MH2)) 162-169 F8.6 [Msun] log(e_MH2) Lower error on log(MH2) (log(MH2_lerr)) 171-179 F9.6 [Msun] log(E_MH2) Upper error on log(MH2) (log(MH2_uerr)) 181-189 F9.6 [Msun] log(MHI) HI gas mass (log(MHI)) 191-199 F9.6 [Msun] log(e_MHI) Lower error on log(MHI) (log(MHI_lerr)) 201-209 F9.6 [Msun] log(E_MHI) Upper error on log(MHI) (log(MHI_uerr)) 211-219 F9.6 [Msun] log(Mbulge) Bulge mass (log(Mbulge)) 221-229 F9.6 [Msun] log(e_Mbulge) Lower error on log(Mbulge) (log(Mbulge_lerr)) 231-239 F9.6 [Msun] log(E_Mbulge) Upper error on log(Mbulge) (log(Mbulge_uerr)) 241-248 F8.6 [kpc] log(Rvir) Virial radius (log(Rvir)) 250-258 F9.6 [kpc] log(e_Rvir) Lower error on log(Rvir) (log(Rvir_lerr)) 260-267 F8.6 [kpc] log(E_Rvir) Upper error on log(Rvir) (log(Rvir_uerr)) 269-277 F9.6 [Msun] log(Mvir) Virial mass (log(Mvir)) 279-287 F9.6 [Msun] log(e_Mvir) Lower error on log(Mvir) (log(Mvir_lerr)) 289-297 F9.6 [Msun] log(E_Mvir) Upper error on log(Mvir) (log(Mvir_uerr)) 299-306 F8.6 [km/s] log(Vvir) Virial velocity (log(Vvir)) 308-316 F9.6 [km/s] log(e_Vvir) Lower error on log(Vvir) (log(Vvir_lerr)) 318-325 F8.6 [km/s] log(E_Vvir) Upper error on log(Vvir) (log(Vvir_uerr)) 327-335 F9.5 km/s Vc Circular velocity (Vc) 337-345 F9.6 km/s e_Vc Error on Vc (Vc_err) 347-353 F7.5 --- RChi2 Reduces chi-square (RChi2) 355-356 A2 --- MCMCflag [ok] MCMC flag (MCMC_flag) (1) -------------------------------------------------------------------------------- Note (1): if 'F' then parameter space (theta) hits the upper (or lower) prior range, otherwise 'ok' -------------------------------------------------------------------------------- Acknowledgements: Gauri Sharma, gsharma(at)sissa.it
(End) Patricia Vannier [CDS] 28-Jan-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line