J/A+A/658/A75   MASCARA-1 b occultation and transit light curves (Hooton+, 2022)

Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection. Hooton M.J., Hoyer S., Kitzmann D., Morris B.M., Smith A.M.S., Collier Cameron A., Futyan D., Maxted P.F.L., Queloz D., Demory B.-O., Heng K., Lendl M., Cabrera J., Csizmadia Sz., Deline A., Parviainen H., Salmon S., Sulis S., Wilson T.G., Bonfanti A., Brandeker A., Demangeon O.D.S., Oshagh M., Persson C.M., Scandariato G., Alibert Y., Alonso R., Anglada Escude G., Barczy T., Barrado D., Barros S.C.C., Baumjohann W., Beck M., Beck T., Benz W., Billot N., Bonfils X., Bourrier V., Broeg C., Busch M.-D., Charnoz S., Davies M.B., Deleuil M., Delrez L., Ehrenreich D., Erikson A., Farinato J., Fortier A., Fossati L., Fridlund M., Gandolfi D., Gillon M., Guedel M., Isaak K.G., Jones K., Kiss L., Laskar J., Lecavelier des Etangs A., Lovis C., Luntzer A., Magrin D., Nascimbeni V., Olofsson G., Ottensamer R., Pagano I., Palle E., Peter G., Piotto G., Pollacco D., Ragazzoni R., Rando N., Ratti F., Rauer H., Ribas I., Santos N.C., Segransan D., Simon A.E., Sousa S.G., Steller M., Szabo Gy.M., Thomas N., Udry S., Ulmer B., Van Grootel V., Walton N.A. <Astron. Astrophys. 658, A75 (2022)> =2022A&A...658A..75H 2022A&A...658A..75H (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Photometry Keywords: techniques: photometric - planets and satellites: atmospheres - planets and satellites: physical evolution - planets and satellites: individual: MASCARA-1 b Abstract: The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle Psi -- a notoriously difficult parameter to measure -- from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of Psi for some systems. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 micron full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet-star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of Psi=72.1+2.5-2.4deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062+66-68K and 1720±330K, respectively. Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag=0.166+0.066-0.068 and spherical albedo As=0.266+0.097-0.100 from the CHEOPS data, and Bond albedo AB=0.053+0.083-0.101 from the Spitzer phase curve. Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H- absorption is expected to dominate. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of Psi. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data. Description: We present photometric light curves observed by CHEOPS, containing three occultations and two transits of MASCARA-1 b. Occultation 1 is not included in the joint analysis, and is analysed separately in section 3.1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file occ1.dat 281 885 MASCARA-1 b occultation 1 light curve occ2.dat 275 890 MASCARA-1 b occultation 2 light curve occ3.dat 275 939 MASCARA-1 b occultation 3 light curve trans1.dat 275 547 MASCARA-1 b transit 1 light curve trans2.dat 275 817 MASCARA-1 b transit 2 light curve -------------------------------------------------------------------------------- See also: J/A+A/606/A73 : MASCARA-1 b (HD201585) light curves and spectra (Talens+, 2017) Byte-by-byte Description of file: occ1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 F16.8 d BJD Barycentric Julian Date (TDB) 18- 33 F16.14 --- Flux Normalised flux 35- 54 F20.18 --- e_Flux Normalised flux error 56- 72 F17.14 --- Xoffset X offset from average 74- 90 F17.14 --- Yoffset Y offset from average 92-107 F16.8 --- background Detector background 109-128 F20.18 --- contam Predicted contamination from nearby PSFs 130-150 F21.19 --- smear Predicted smearing contamination 152-167 F16.12 --- Xcent X centroid position 169-184 F16.12 --- Ycent Y centroid position 186-201 F16.12 deg RollAngle Spacecraft roll angle 203-224 F22.19 --- glinty Y offset detrended "glint" function 226-241 F16.14 --- Fluxdetrendy Y offset detrended normalised flux 243-264 F22.19 --- glintbg Time detrended "glint" function 266-281 F16.14 --- Fluxdetrendbg Time detrended normalised flux -------------------------------------------------------------------------------- Byte-by-byte Description of file: occ2.dat occ3.dat trans1.dat trans2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 F18.10 d BJD Barycentric Julian Date (TDB) 20- 37 F18.16 --- Flux Normalised flux 39- 60 F22.20 --- e_Flux Normalised flux error 62- 79 F18.15 --- Xoffset X offset from average 81- 97 F17.14 --- Yoffset Y offset from average 99-127 F29.20 --- background Detector background 129-150 F22.20 --- contam Predicted contamination from nearby PSFs 152-173 E22.19 --- smear Predicted smearing contamination 175-192 F18.14 --- Xcent X centroid position 194-210 F17.13 --- Ycent Y centroid position 212-232 F21.17 deg RollAngle Spacecraft roll angle 234-256 E23.19 --- glint Roll angle-dependent "glint" function 258-275 F18.16 --- Fluxdetrend Detrended normalised flux -------------------------------------------------------------------------------- Acknowledgements: Matthew J. Hooton, matthew.hooton(at)unibe.ch
(End) Patricia Vannier [CDS] 09-Dec-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line