J/A+A/658/A194      Stellar parameters of 18 M dwarfs         (Passegger+, 2022)

Metallicities in M dwarfs: Investigating different determination techniques. Passegger V.M., Bello-Garcia A., Ordieres-Mere J., Antoniadis-Karnavas A., Marfil E., Duque-Arribas C., Amado P.J., Delgado-Mena E., Montes D., Rojas-Ayala B., Schweitzer A., Tabernero H.M., Bejar V.J.S., Caballero J.A., Hatzes A.P., Henning T., Pedraz S., Quirrenbach A., Reiners A., Ribas I. <Astron. Astrophys. 658, A194 (2022)> =2022A&A...658A.194P 2022A&A...658A.194P (SIMBAD/NED BibCode)
ADC_Keywords: Stars, M-type ; Abundances, [Fe/H] ; Effective temperatures ; Spectroscopy ; Optical Keywords: methods: data analysis - techniques: spectroscopic - stars: fundamental parameters - stars: late-type - stars: low-mass Abstract: Deriving metallicities for solar-like stars follows well-established methods, but for cooler stars such as M dwarfs, the determination is much more complicated due to forests of molecular lines that are present. Several methods have been developed in recent years to determine accurate stellar parameters for these cool stars (Teff<4000K). However, significant differences can be found at times when comparing metallicities for the same star derived using different methods. In this work, we determine the effective temperatures, surface gravities, and metallicities of 18 well-studied M dwarfs observed with the CARMENES high-resolution spectrograph following different approaches, including synthetic spectral fitting, analysis of pseudo-equivalent widths, and machine learning. We analyzed the discrepancies in the derived stellar parameters, including metallicity, in several analysis runs. Our goal is to minimize these discrepancies and find stellar parameters that are more consistent with the literature values. We attempted to achieve this consistency by standardizing the most commonly used components, such as wavelength ranges, synthetic model spectra, continuum normalization methods, and stellar parameters. We conclude that although such modifications work quite well for hotter main-sequence stars, they do not improve the consistency in stellar parameters for M dwarfs, leading to mean deviations of around 50-200K in temperature and 0.1-0.3dex in metallicity. In particular, M dwarfs are much more complex and a standardization of the aforementioned components cannot be considered as a straightforward recipe for bringing consistency to the derived parameters. Further in-depth investigations of the employed methods would be necessary in order to identify and correct for the discrepancies that remain. Description: We present the stellar parameters for our sample of 18 M dwarfs derived by each team during the Runs A, B, C, and C2. The columns show Karmn identifier, method, effective temperature, surface gravity, and metallicity [Fe/H]. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file stars.dat 34 18 List of studied stars tablec1.dat 108 72 Stellar parameters from Runs A and B tablec2.dat 108 72 Stellar parameters from Runs C and C2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: stars.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Karmn Carmencita identifier (JHHMMM+DDd) 12- 13 I2 h RAh Simbad right ascension (J2000) 15- 16 I2 min RAm Simbad right ascension (J2000) 18- 22 F5.2 s RAs Simbad right ascension (J2000) 24 A1 --- DE- Declination sign (J2000) 25- 26 I2 deg DEd Declination (J2000) 28- 29 I2 arcmin DEm Declination (J2000) 31- 34 F4.1 arcsec DEs Declination (J2000) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Karmn Carmencita identifier (JHHMMM+DDd) 14- 24 A11 --- Method Method 28- 31 I4 K TeffA Effective temperature Run A 35- 37 I3 K e_TeffA Error effective temperature Run A 41- 44 F4.2 [cm/s2] loggA ?=- Surface gravity Run A 48- 51 F4.2 [cm/s2] e_loggA ?=- Error surface gravity Run A 55- 59 F5.2 [-] [Fe/H]A Metallicity Run A 63- 66 F4.2 [-] e_[Fe/H]A Error metallicity Run A 70- 73 I4 K TeffB ?=- Effective temperature Run B 77- 79 I3 K e_TeffB ?=- Error effective temperature Run B 83- 86 F4.2 [cm/s2] loggB ?=- Surface gravity Run B 90- 93 F4.2 [cm/s2] e_loggB ?=- Error surface gravity Run B 97-101 F5.2 [-] [Fe/H]B ?=- Metallicity Run B 105-108 F4.2 [-] e_[Fe/H]B ?=- Error metallicity Run B -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Karmn Carmencita identifier (JHHMMm+DDd) 14- 24 A11 --- Method Method (1) 28- 31 I4 K TeffC Effective temperature Run C 35- 37 I3 K e_TeffC Error effective temperature Run C 41- 44 F4.2 [cm/s2] loggC ?=- Surface gravity Run C 48- 51 F4.2 [cm/s2] e_loggC ?=- Error surface gravity Run C 55- 59 F5.2 [-] [Fe/H]C Metallicity Run C 63- 66 F4.2 [-] e_[Fe/H]C Error metallicity Run C 70- 73 I4 K TeffC2 ?=- Effective temperature Run C2 77- 79 I3 K e_TeffC2 ?=- Error effective temperature Run C2 83- 86 F4.2 [cm/s2] loggC2 ?=- Surface gravity Run C2 90- 93 F4.2 [cm/s2] e_loggC2 ?=- Error surface gravity Run C2 97-101 F5.2 [-] [Fe/H]C2 ?=- Metallicity Run C2 105-108 F4.2 [-] e_[Fe/H]C2 ?=- Error metallicity Run C2 -------------------------------------------------------------------------------- Note (1): Run C for ODUSSEAS corresponds to their Run C*. -------------------------------------------------------------------------------- Acknowledgements: Vera Maria Passegger, vpassegger(at)hs.uni-hamburg.de
(End) Vera Maria Passegger [HS, Germany], Patricia Vannier [CDS] 07-Dec-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line