J/A+A/655/A90           SN 2020cxd multi-photometry                (Yang+, 2021)

A low-energy explosion yields the underluminous Type IIP SN 2020cxd. Yang S., Sollerman J., Strotjohann N.L., Schulze S., Lunnan R., Kool E., Fremling C., Perley D., Ofek E., Schweyer T., Bellm E.C., Kasliwal M.M., Masci F.J., Rigault M., Yang Y. <Astron. Astrophys. 655, A90 (2021)> =2021A&A...655A..90Y 2021A&A...655A..90Y (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Photometry, ugriz ; Spectroscopy Keywords: supernovae: general - galaxies: individual: NGC 6395 Abstract: We present observations and analysis of SN 2020cxd, a low-luminosity (LL), long-lived Type IIP supernova (SN). This object was a clear outlier in the magnitude-limited SN sample recently presented by the Zwicky Transient Facility (ZTF) Bright Transient Survey. We demonstrate that SN 2020cxd is an additional member of the group of LL SNe, and discuss the rarity of LL SNe in the context of the ZTF survey, and how further studies of these faintest members of the core-collapse (CC) SN family might help understand the underlying initial mass function for stars that explode. We present optical light curves (LCs) from the ZTF in the $gri$ bands and several epochs of ultra-violet data from the Neil Gehrels Swift Observatory as well as a sequence of optical spectra. We construct colour curves, a bolometric LC, compare ejecta-velocity and black-body temperature evolutions for LL SNe, as well as for typical Type II SNe. Furthermore, we adopt a Monte Carlo code that fits semi-analytic models to the LC of SN 2020cxd, which allows the estimation of physical parameters. Using our late-time nebular spectra, we also compare against SN II spectral synthesis models from the literature to constrain the progenitor properties of SN 2020cxd. The LCs of SN 2020cxd show great similarity with those of LL SNe IIP, in luminosity, timescale and colours. Also the spectral evolution of SN 2020cxd is that of a Type IIP SN. The spectra show prominent and narrow P-Cygni lines, indicating low expansion velocities. This is one of the faintest LL SNe observed, with an absolute plateau magnitude of Mr=-14.5mag, and also one with the longest plateau lengths, with a duration of 118 days. Finally, the velocities measured from the nebular emission lines are among the lowest ever seen in a SN, with intrinsic Full Width at Half Maximum of 478km/s. The underluminous late-time exponential LC tail indicates that the mass of 56Ni ejected during the explosion is much smaller than the average of normal SNe IIP, we estimate M56^Ni=0.003M+{sun+. The Monte Carlo fitting of the bolometric LC suggests that the progenitor of SN 2020cxd had a radius of R0=1.3x1013cm, kinetic energy of Ekin=4.3x1050erg, and ejecta mass Mej=9.5M. From the bolometric LC, we estimate the total radiated energy Erad=1.52x1048erg. Using our late-time nebular spectra, we compare against SN II spectral synthesis models to constrain the progenitor Zero-age Main-sequence mass and found it likely to be ≲15M_☉+. SN 2020cxd is a LL Type IIP SN. The inferred progenitor parameters and the features observed in the nebular spectrum favour a low-energy, Ni-poor, iron CC SN from a low mass ∼12M red supergiant. Description: Photometric and spectroscopic data for SN 2020cxd. Objects: ---------------------------------------------------- RA (2000) DE Designation(s) ---------------------------------------------------- 17 26 29.26 +71 05 38.6 SN 2020cxd = SN 2020cxd ---------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file ground.dat 81 89 Photometry of P48 P60 LT and NOT swift.dat 88 6 Photometry of Swift UVOT lt-0220.dat 30 432 Calibrated Spectrum of LT on 2020/02/20 p60-0220.dat 30 214 Calibrated Spectrum of P60 on 2020/02/20 p60-0225.dat 30 214 Calibrated Spectrum of P60 on 2020/02/25 p60-0522.dat 30 214 Calibrated Spectrum of P60 on 2020/05/22 lt-0625.dat 30 432 Calibrated Spectrum of LT on 2020/06/25 p60-0626.dat 30 214 Calibrated Spectrum of P60 on 2020/06/26 not-0701.dat 30 1705 Calibrated Spectrum of NOT on 2020/07/01 gemini.dat 30 1308 Calibrated Spectrum of Gemini on 2020/07/28 keck1.dat 30 5106 Calibrated Spectrum of Keck1 on 2020/10/19 -------------------------------------------------------------------------------- See also: http://www.wiserep.org/object/14204 : WISeREP Byte-by-byte Description of file: ground.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.2 d JD [2458896.0/2459131.37] Julian Date 12- 18 F7.2 d Phase [-1.52/232.94] Rest Frame Phase 20- 22 A3 --- Inst Instrument Name 23 A1 --- l_umag Upper limit flag on umag 24- 28 F5.2 mag umag ?=99 u band magnitude (1) 30- 34 F5.2 mag e_umag ?=99 Error of u band magnitude 35 A1 --- l_gmag Upper limit flag on gmag 36- 40 F5.2 mag gmag ?=99 g band magnitude (1) 42- 46 F5.2 mag e_gmag ?=99 Error of g band magnitude 47 A1 --- l_rmag Upper limit flag on rmag 48- 52 F5.2 mag rmag ?=99 r band magnitude (1) 54- 58 F5.2 mag e_rmag ?=99 Error of r band magnitude 59 A1 --- l_imag Upper limit flag on imag 60- 64 F5.2 mag imag ?=99 i band magnitude (1) 66- 70 F5.2 mag e_imag ?=99 Error of i band magnitude 72- 75 F4.1 mag zmag ?=99 z band magnitude 77- 81 F5.2 mag e_zmag ?=99 Error of z band magnitude -------------------------------------------------------------------------------- Note (1): Measurements with magnitude error of 99 stands for upper limits. -------------------------------------------------------------------------------- Byte-by-byte Description of file: swift.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.2 d JD [2458899.87/2459003.04] Julian Date 12- 17 F6.2 d Phase [2.33/105.1] Rest Frame Phase 18 A1 --- l_Vmag Upper limit flag on Vmag 19- 23 F5.2 mag Vmag V band magnitude (1) 25- 29 F5.2 mag e_Vmag ?=99 Error of V band magnitude 31- 35 F5.2 mag Bmag B band magnitude 37- 40 F4.2 mag e_Bmag Error of B band magnitude 41 A1 --- l_Umag Upper limit flag on Umag 42- 46 F5.2 mag Umag U band magnitude (1) 48- 52 F5.2 mag e_Umag ?=99 Error of U band magnitude 53 A1 --- l_UVW1 Upper limit flag on UVW1 54- 58 F5.2 mag UVW1 ?=99 UVW1 band magnitude (1) 60- 64 F5.2 mag e_UVW1 ?=99 Error of UVW1 band magnitude 65 A1 --- l_UVW2 Upper limit flag on UVW2 66- 70 F5.2 mag UVW2 ?=99 UVW2 band magnitude (1) 72- 76 F5.2 mag e_UVW2 ?=99 Error of UVW2 band magnitude 77 A1 --- l_UVM2 Upper limit flag on UVM2 (1) 78- 82 F5.2 mag UVM2 ?=99 UVM2 band magnitude 84- 88 F5.2 mag e_UVM2 ?=99 Error of UVM2 band magnitude -------------------------------------------------------------------------------- Note (1): Measurements with magnitude error of 99 stands for upper limits. -------------------------------------------------------------------------------- Byte-by-byte Description of file: gem*.dat keck1.dat lt*.dat not*.dat p60*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.1 0.1nm lambda Wavelength 9- 30 E22.17 10mW/m2/nm Flux ?=0 Flux (erg/cm2/s/Å) -------------------------------------------------------------------------------- Acknowledgements: Sheng Yang, sheng.yang(at)astro.su.se
(End) Patricia Vannier [CDS] 22-Aug-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line