J/A+A/652/A25 Abundance-age relations with open clusters (Casamiquela+, 2021)
Abundance-age relations with red clump stars in open clusters.
Casamiquela L., Soubiran C., Jofre P., Chiappini C., Lagarde N.,
Tarricq Y., Carrera R., Jordi C., Balaguer-Nunez L., Carbajo-Hijarrubia J.,
Blanco-Cuaresma S.
<Astron. Astrophys. 652, A25 (2021)>
=2021A&A...652A..25C 2021A&A...652A..25C (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Clusters, open ; Abundances
Keywords: stars: abundances - open clusters and associations: general -
techniques: spectroscopic
Abstract:
Precise chemical abundances coupled with reliable ages are key
ingredients to understand the chemical history of our Galaxy. Open
Clusters (OCs) are useful for this purpose because they provide ages
with good precision.
The aim of this work is to investigate the relations of different
chemical abundance ratios vs age traced by red clump (RC) stars in
OCs.
We analyze a large sample of "NGoodstars" reliable members in
"NClusters" OCs with available high-resolution spectroscopy. We
applied a differential line-by-line analysis to provide a
comprehensive chemical study of "NElements" chemical species. This
sample is among the largest samples of OCs homogeneously characterized
in terms of atmospheric parameters, detailed chemistry, and ages.
In our metallicity range (-0.2<[M/H]<+0.2) we find that while most
Fe-peak and α elements have flat dependence with age, the
s-process elements show decreasing trends with increasing age with a
remarkable knee at 1Gyr. For Ba, Ce, Y, Mo and Zr we find a plateau
at young ages (<1Gyr). We investigate the relations of all possible
combinations among the computed chemical species with age. We find 19
combinations with significant slopes, including [Y/Mg] and [Y/Al]. The
ratio [Ba/α] is the one with the most significant correlations
found.
We find that the [Y/Mg] relation found in the literature using Solar
twins is compatible with the one found here in the Solar
neighbourhood. The age-abundance relations show larger scatter for
clusters at large distances (d>1kpc) than for the Solar neighbourhood,
particularly in the outer disk. We conclude that these relations need
to be understood also in terms of the complexity of the chemical space
introduced by the Galactic dynamics, on top of pure nucleosynthetic
arguments, especially out of the local bubble.
Description:
tableA1: results of the spectroscopic analysis per cluster (mean
abundances and uncertainties), and parameters of the clusters used
throughout the paper (distance, Galactocentric radius, height above
the plane and age).
tableA2: details of the used spectra (cluster, star identifier,
instrument and signal to noise ratio).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea2.dat 1163 47 Mean cluster abundances
tablea1.dat 65 269 Details of the used spectra
--------------------------------------------------------------------------------
See also:
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Cluster Cluster name
18- 23 F6.1 pc Dist Heliocentric distance
25- 31 F7.1 pc Rgc Galactocentric radius
33- 38 F6.1 pc Z Height above the plane
40- 58 F19.17 Gyr age Cluster age
60- 79 F20.18 Gyr e_age Cluster age uncertainty
81- 84 F4.1 [-] Nstars Number of stars analysed for the cluster
86- 106 F21.18 [-] [Na/H] Mean value of cluster the sodium
abundance [Na/H]
108- 127 F20.18 [-] e_[Na/H] rms uncertainty in the cluster sodium
abundance [Na/H]
129- 132 F4.1 --- o_[Na/H] Number of stars used to derive the mean
abundance [Na/H]
134- 155 F22.19 [-] [Al/H] Mean value of cluster the abundance [Al/H]
157- 176 F20.18 [-] e_[Al/H] rms uncertainty on abundance [Al/H]
178- 181 F4.1 --- o_[Al/H] Number of stars used to derive the mean
abundance [Al/H]
183- 204 F22.19 [-] [Mg/H] Mean value of cluster the abundance [Mg/H]
206- 226 F21.19 [-] e_[Mg/H] rms uncertainty on abundance [Mg/H]
228- 231 F4.1 --- o_[Mg/H] Number of stars used to derive the mean
abundance [Mg/H]
233- 253 F21.18 [-] [Si/H] Mean value of cluster the abundance [Si/H]
255- 275 F21.19 [-] e_[Si/H] rms uncertainty on abundance [Si/H]
277- 280 F4.1 --- o_[Si/H] Number of stars used to derive the mean
abundance [Si/H]
282- 303 F22.19 [-] [Ca/H] Mean value of cluster the abundance [Ca/H]
305- 325 F21.19 [-] e_[Ca/H] rms uncertainty on abundance [Ca/H]
327- 330 F4.1 --- o_[Ca/H] Number of stars used to derive the mean
abundance [Ca/H]
332- 352 F21.18 [-] [Sc/H] Mean value of cluster the abundance [Sc/H]
354- 374 F21.19 [-] e_[Sc/H] rms uncertainty on abundance [Sc/H]
376- 379 F4.1 --- o_[Sc/H] Number of stars used to derive the mean
abundance [Sc/H]
381- 402 F22.19 [-] [Ti/H] Mean value of cluster the abundance [Ti/H]
404- 424 F21.19 [-] e_[Ti/H] rms uncertainty on abundance [Ti/H]
426- 429 F4.1 --- o_[Ti/H] Number of stars used to derive the mean
abundance [Ti/H]
431- 451 F21.18 [-] [V/H] Mean value of cluster the abundance [V/H]
453- 473 F21.19 [-] e_[V/H] rms uncertainty on abundance [V/H]
475- 478 F4.1 --- o_[V/H] Number of stars used to derive the mean
abundance [V/H]
480- 501 F22.19 [-] [Cr/H] Mean value of cluster the abundance [Cr/H]
503- 523 F21.19 [-] e_[Cr/H] rms uncertainty on abundance [Cr/H]
525- 528 F4.1 --- o_[Cr/H] Number of stars used to derive the mean
abundance [Cr/H]
530- 550 F21.18 [-] [Mn/H] Mean value of cluster the abundance [Mn/H]
552- 571 F20.18 [-] e_[Mn/H] rms uncertainty on abundance [Mn/H]
573- 576 F4.1 --- o_[Mn/H] Number of stars used to derive the mean
abundance [Mn/H]
578- 599 F22.19 [-] [Fe/H] Mean value of cluster the abundance [Fe/H]
601- 621 F21.19 [-] e_[Fe/H] rms uncertainty on abundance [Fe/H]
623- 626 F4.1 --- o_[Fe/H] Number of stars used to derive the mean
abundance [Fe/H]
628- 648 F21.18 [-] [Co/H] Mean value of cluster the abundance [Co/H]
650- 669 F20.18 [-] e_[Co/H] rms uncertainty on abundance [Co/H]
671- 674 F4.1 --- o_[Co/H] Number of stars used to derive the mean
abundance [Co/H]
676- 696 F21.18 [-] [Ni/H] Mean value of cluster the abundance [Ni/H]
698- 717 F20.18 [-] e_[Ni/H] rms uncertainty on abundance [Ni/H]
719- 722 F4.1 --- o_[Ni/H] Number of stars used to derive the mean
abundance [Ni/H]
724- 745 F22.19 [-] [Cu/H] Mean value of cluster the abundance [Cu/H]
747- 767 F21.19 [-] e_[Cu/H] rms uncertainty on abundance [Cu/H]
769- 772 F4.1 --- o_[Cu/H] Number of stars used to derive the mean
abundance [Cu/H]
774- 794 F21.18 [-] [Zn/H] ? Mean value of cluster the abundance [Zn/H]
796- 816 F21.19 [-] e_[Zn/H] ? rms uncertainty on abundance [Zn/H]
818- 821 F4.1 --- o_[Zn/H] ?=0 Number of stars used to derive the mean
abundance [Zn/H]
823- 844 F22.19 [-] [Y/H] Mean value of cluster the abundance [Y/H]
846- 865 F20.18 [-] e_[Y/H] rms uncertainty on abundance [Y/H]
867- 870 F4.1 --- o_[Y/H] Number of stars used to derive the mean
abundance [Y/H]
872- 893 F22.19 [-] [Zr/H] ? Mean value of cluster the abundance [Zr/H]
895- 914 F20.18 [-] e_[Zr/H] ? rms uncertainty on abundance [Zr/H]
916- 919 F4.1 --- o_[Zr/H] ?=0 Number of stars used to derive the mean
abundance [Zr/H]
921- 942 F22.19 [-] [Mo/H] ? Mean value of cluster the abundance [Mo/H]
944- 963 F20.18 [-] e_[Mo/H] ? rms uncertainty on abundance [Mo/H]
965- 968 F4.1 --- o_[Mo/H] ?=0 Number of stars used to derive the mean
abundance [Mo/H]
970- 989 F20.17 [-] [Ba/H] Mean value of cluster the abundance [Ba/H]
991-1011 F21.19 [-] e_[Ba/H] rms uncertainty on abundance [Ba/H]
1013-1016 F4.1 --- o_[Ba/H] Number of stars used to derive the mean
abundance [Ba/H]
1018-1039 F22.19 [-] [Ce/H] Mean value of cluster the abundance [Ce/H]
1041-1060 F20.18 [-] e_[Ce/H] rms uncertainty on abundance [Ce/H]
1062-1065 F4.1 --- o_[Ce/H] Number of stars used to derive the mean
abundance [Ce/H]
1067-1087 F21.18 [-] [Pr/H] ? Mean value of cluster the abundance [Pr/H]
1089-1108 F20.18 [-] e_[Pr/H] ? rms uncertainty on abundance [Pr/H]
1110-1113 F4.1 --- o_[Pr/H] ?=0 Number of stars used to derive the mean
abundance [Pr/H]
1115-1136 F22.19 [-] [Nd/H] ? Mean value of cluster the abundance [Nd/H]
1138-1158 F21.19 [-] e_[Nd/H] ? rms uncertainty on abundance [Nd//H
1160-1163 F4.1 --- o_[Nd/H] ?=0 Number of stars used to derive the mean
abundance [Nd/H]
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Cluster Cluster name
18- 36 I19 --- GaiaDR2 Gaia DR2 source ID of the star
38- 45 A8 --- Inst Instrument used
47- 58 A12 --- origin Origin of the spectrum
(archive/own observations)
60- 65 F6.1 --- snr Signal-to-noise ratio of the spectrum
--------------------------------------------------------------------------------
Acknowledgements:
Laia Casamiquela, laia.casamiquela-floriach(at)u-bordeaux.fr
(End) Patricia Vannier [CDS] 17-May-2021