J/A+A/650/A203   Effects of IMG on Galactic chemical enrichment (Goswami+, 2021)

The effects of the initial mass function on Galactic chemical enrichment. Goswami S., Slemer A., Marigo P., Bressan A., Silva L., Spera M., Boco L., Grisoni V., Pantoni L., Lapi A. <Astron. Astrophys. 650, A203 (2021)> =2021A&A...650A.203G 2021A&A...650A.203G (SIMBAD/NED BibCode)
ADC_Keywords: Models, evolutionary ; Milky Way ; Abundances Keywords: stars: abundances - stars: massive - Galaxy: abundances - Galaxy: disc - Galaxy: solar neighborhood - Galaxy: evolution Abstract: We have been seeing mounting evidence that the stellar initial mass function (IMF) might extend far beyond the canonical Mi∼100M limit, but the impact of such a hypothesis on the chemical enrichment of galaxies is yet to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi∼350M by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code, we analysed the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we set our focus on the [O/Fe] ratio that best separates the chemical patterns of the two Milky Way components. We nd that with a standard IMF, truncated at Mi∼100M, we can reproduce various observational constraints for thin-disc stars; however, the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi=350M; while including the chemical ejecta of very massive stars in the form of winds and pair instability supernova (PISN) explosions. Our study indicates that PISN may have played a significant role in shaping the chemical evolution of the thick disc of the Milky Way. Including their chemical yields makes it easier to reproduce not only the level of the a-enhancement, but also the observed slope of thick-disc stars in the [O/Fe] versus [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in models of chemical evolution. Description: We present the ejecta tables (set TW) for massive and very massive stars used in this work that will be available on-line, for 4 values of the initial metallicity (Zi=0.0001,0.001,0.006,0.02) and 30 values of the initial mass (8≤Mi/M≤350). Each table corresponds to one selected value of Zi. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file abundini.dat 491 4 Initial stellar abundance for the 4 tables z0p0001.dat 765 27 Explosive Total (not newly formed) ejecta for Z=0.0001 z0p001.dat 765 27 Explosive Total (not newly formed) ejecta for Z=0.001 z0p006.dat 765 27 Explosive Total (not newly formed) ejecta for Z=0.0006 z0p02.dat 765 27 Explosive Total (not newly formed) ejecta for Z=0.02 -------------------------------------------------------------------------------- Byte-by-byte Description of file: abundini.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Table Table name 13- 23 E11.5 --- H Initial H stellar abundance 25- 35 E11.5 --- He3 Initial 3He stellar abundance 37- 47 E11.5 --- He4 Initial 4He stellar abundance 49- 59 E11.5 --- Li7 Initial 7Li stellar abundance 61- 71 E11.5 --- Be7 Initial 7Be stellar abundance 73- 83 E11.5 --- C12 Initial 12C stellar abundance 85- 95 E11.5 --- C13 Initial 13C stellar abundance 97-107 E11.5 --- N14 Initial 14N stellar abundance 109-119 E11.5 --- N15 Initial 15N stellar abundance 121-131 E11.5 --- O16 Initial 16O stellar abundance 133-143 E11.5 --- O17 Initial 17O stellar abundance 145-155 E11.5 --- O18 Initial 18O stellar abundance 157-167 E11.5 --- F19 Initial 19F stellar abundance 169-179 E11.5 --- Ne20 Initial 20Ne stellar abundance 181-191 E11.5 --- Ne21 Initial 21Ne stellar abundance 193-203 E11.5 --- Ne22 Initial 22Ne stellar abundance 205-215 E11.5 --- Na23 Initial 23Na stellar abundance 217-227 E11.5 --- Mg24 Initial 24Mg stellar abundance 229-239 E11.5 --- Mg25 Initial 25Mg stellar abundance 241-251 E11.5 --- Mg26 Initial 26Mg stellar abundance 253-263 E11.5 --- Al26 Initial 26Al stellar abundance 265-275 E11.5 --- Al27 Initial 27Al stellar abundance 277-287 E11.5 --- Si28 Initial 28Si stellar abundance 289-299 E11.5 --- Si29 Initial 20Si stellar abundance 301-311 E11.5 --- P Initial P stellar abundance 313-323 E11.5 --- S Initial S stellar abundance 325-335 E11.5 --- Cl Initial Cl stellar abundance 337-347 E11.5 --- Ar Initial Ar stellar abundance 349-359 E11.5 --- K Initial K stellar abundance 361-371 E11.5 --- Ca Initial Ca stellar abundance 373-383 E11.5 --- Sc Initial Sc stellar abundance 385-395 E11.5 --- Ti Initial Ti stellar abundance 397-407 E11.5 --- V Initial V stellar abundance 409-419 E11.5 --- Cr Initial Cr stellar abundance 421-431 E11.5 --- Mn Initial Mn stellar abundance 433-443 E11.5 --- Fe Initial Fe stellar abundance 445-455 E11.5 --- Co Initial Co stellar abundance 457-467 E11.5 --- Ni Initial Ni stellar abundance 469-479 E11.5 --- Cu Initial Cu stellar abundance 481-491 E11.5 --- Zn Initial Zn stellar abundance -------------------------------------------------------------------------------- Byte-by-byte Description of file (#): z* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 9- 15 F7.5 --- Zi Initial metallicity 24- 30 F7.5 --- Yi Initial Y abundance 37- 45 F9.5 Msun Mini Mass of the star at the zero-age main sequence (Mini2 for z0p0001.dat) 52- 60 F9.5 Msun Mfin Mass of the star at the beginning of central carbon burning (almost equivalent to the pre-SN mass) 67- 75 F9.5 Msun MHe Mass of the He-core at the beginning of central carbon burning 82- 90 F9.5 Msun MCO Mass of CO-core at the beginning of central carbon burning 97-105 F9.5 Msun Mcut Mass-cut, in a pre-supernova model, enclosing the entire mass that will collapse and form the compact remnant 118-122 A5 --- PreSNPhase Pre SN phase (1) 129-138 A10 --- SNType SN type (2) 142-150 F9.5 Msun Mtot Total mass 155-165 E11.6 --- Mini-Mtot Difference between the initial mass and total mass 170-180 E11.6 --- H 1H yield (3) 185-195 E11.6 --- He3 3He yield (3) 200-210 E11.6 --- He4 4He yield (3) 215-225 E11.6 --- Li7 7Li yield (3) 230-240 E11.6 --- Be7 7Be yield (3) 245-255 E11.6 --- C12 12CO yield (3) 260-270 E11.6 --- C13 13CO yield (3) 275-285 E11.6 --- N14 14N yield (3) 290-300 E11.6 --- N15 15N yield (3) 305-315 E11.6 --- O16 16O yield (3) 320-330 E11.6 --- O17 17O yield (3) 335-345 E11.6 --- O18 18O yield (3) 350-360 E11.6 --- F19 19F yield (3) 365-375 E11.6 --- Ne20 20Ne yield (3) 380-390 E11.6 --- Ne21 21Ne yield (3) 395-405 E11.6 --- Ne22 22Ne yield (3) 410-420 E11.6 --- Na23 23Na yield (3) 425-435 E11.6 --- Mg24 24Mg yield (3) 440-450 E11.6 --- Mg25 25Mg yield (3) 455-465 E11.6 --- Mg26 26Mg yield (3) 470-480 E11.6 --- Al26 26Al yield (3) 485-495 E11.6 --- Al27 27Al yield (3) 500-510 E11.6 --- Si28 28Si yield (3) 515-525 E11.6 --- Si29 29Si yield (3) 530-540 E11.6 --- P P yield (3) 545-555 E11.6 --- S S yield (3) 560-570 E11.6 --- Cl Cl yield (3) 575-585 E11.6 --- Ar Ar yield (3) 590-600 E11.6 --- K K yield (3) 605-615 E11.6 --- Ca Ca yield (3) 620-630 E11.6 --- Sc Sc yield (3) 635-645 E11.6 --- TI Ti yield (3) 650-660 E11.6 --- V V yield (3) 665-675 E11.6 --- Cr Cr yield (3) 680-690 E11.6 --- Mn Mn yield (3) 695-705 E11.6 --- Fe Fe yield (3) 710-720 E11.6 --- Co Co yield (3) 725-735 E11.6 --- Ni Ni yield (3) 740-750 E11.6 --- Cu Cu yield (3) 755-765 E11.6 --- Zn Zn yield (3) -------------------------------------------------------------------------------- Note (1): pre-SN phase as follows: RSG = red supergiant BSG = blue supergiant WC = Wolf-Rayet stars enriched in carbon WN = Wolf-Rayet stars enriched in nitrogen WO = Wolf-Rayet stars enriched in oxygen LBV = luminous blue variables Note (2): SN type as follows: fCCSN_0 = failed core collapse supernova sCCSN_0 = successful core collapse supernova PISN_0 = Pair instability supernova PPISN_0 = Pulsation pair instability supernova DBH_0 = Direct collapse to black hole Note (3): initial stellar abundances n abundini.dat table. -------------------------------------------------------------------------------- Acknowledgements: Sabyasachi Goswami, sgoswami(at)sissa.it
(End) Patricia Vannier [CDS] 21-Jun-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line