J/A+A/650/A182      Homogeneous study of Herbig Ae/Be stars (Guzman-Diaz+, 2021)

Homogeneous study of Herbig Ae/Be stars from spectral energy distributions and Gaia EDR3. Guzman-Diaz J., Mendigutia I., Montesinos B., Oudmaijer R.D., Vioque M., Rodrigo C., Solano E., Meeus G., Marcos-Arenal P. <Astron. Astrophys. 650, A182 (2021)> =2021A&A...650A.182G 2021A&A...650A.182G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, pre-main sequence ; Stars, emission ; Effective temperatures ; Photometry ; Stars, distances ; Stars, ages ; Stars, masses Keywords: protoplanetary disks - stars: pre-main sequence - stars: variables: T Tauri, Herbig Ae/Be - virtual observatory tools - stars: fundamental parameters - astronomical data bases Abstract: Herbig Ae/Be stars (HAeBes) have so far been studied based on relatively small samples that are scattered throughout the sky. Their fundamental stellar and circumstellar parameters and statistical properties were derived with heterogeneous approaches before Gaia. Our main goal is to contribute to the study of HAeBes from the largest sample of such sources to date, for which stellar and circumstellar properties have been determined homogeneously from the analysis of the spectral energy distributions (SEDs) and Gaia EDR3 parallaxes and photometry. Multiwavelength photometry was compiled for 209 bona fide HAeBes for which Gaia EDR3 distances were estimated. Using the Virtual Observatory SED Analyser (VOSA), photospheric models were fit to the optical SEDs to derive stellar parameters, and the excesses at infrared (IR) and longer wavelengths were characterized to derive several circumstellar properties. A statistical analysis was carried out to show the potential use of such a large dataset. The stellar temperature, luminosity, radius, mass, and age were derived for each star based on optical photometry. In addition, their IR SEDs were classified according to two different schemes, and their mass accretion rates, disk masses, and the sizes of the inner dust holes were also estimated uniformly. The initial mass function fits the stellar mass distribution of the sample within 2<Mstar/M<12. In this aspect, the sample is therefore representative of the HAeBe regime and can be used for statistical purposes when it is taken into account that the boundaries are not well probed. Our statistical study does not reveal any connection between the SED shape from the Meeus et al., 2001A&A...365..476M 2001A&A...365..476M classification and the presence of transitional disks, which are identified here based on the SEDs that show an IR excess starting at the K band or longer wavelengths. In contrast, only ∼28% of the HAeBes have transitional disks, and the related dust disk holes are more frequent in HBes than in HAes (∼34% vs 15%). The relatively small inner disk holes and old stellar ages estimated for most transitional HAes indicate that photoevaporation cannot be the main mechanism driving disk dissipation in these sources. In contrast, the inner disk holes and ages of most transitional HBes are consistent with the photoevaporation scenario, although these results alone do not unambiguously discard other disk dissipation mechanisms. The complete dataset is available online through a Virtual Observatory- compliant archive, representing the most recent reference for statistical studies on the HAeBe regime. VOSA is a complementary tool for the future characterization of newly identified HAeBes. Description: Table B.1 lists the coordinates, Gaia EDR3 distances, stellar parameters derived from SED fitting for the 209 Herbig Ae/Be stars in the sample. Table B.2 lists circumstellar properties for that sample, including two classifications of the SED shape, stellar accretion rates and accretion luminosities, and disk masses inferred from accretion. Table B.3 lists the disk masses estimated from (sub-) millimeter continuum data available in the literature for a sub-sample including 73 Herbig Ae/Be stars. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 165 209 Stellar parameters tableb2.dat 87 209 SED classifications and disk parameters tableb3.dat 57 73 Disk masses derived by millimeter fluxes -------------------------------------------------------------------------------- See also: I/350 : Gaia EDR3 (Gaia Collaboration, 2020) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Object Name of the Herbig Ae/Be star 18- 19 I2 h RAh Right ascension (ICRS) at epoch 2016 21- 22 I2 min RAm Right ascension (ICRS) at epoch 2016 24- 27 F4.1 s RAs Right ascension (ICRS) at epoch 2016 29 A1 --- DE- Declination sign (ICRS) at epoch 2016 30- 31 I2 deg DEd Declination (ICRS) at epoch 2016 33- 34 I2 arcmin DEm Declination (ICRS) at epoch 2016 36- 37 I2 arcsec DEs Declination (ICRS) at epoch 2016 39- 46 F8.2 pc d Distance (1) 48- 54 F7.2 pc e_d Lower error on the Distance 56- 62 F7.2 pc E_d Upper error on the Distance 64- 74 A11 K DeltaT Input range of temperature of VOSA 76- 78 F3.1 mag Av Visual extinction 80- 83 F4.2 mag e_Av Error in the visual extinction 85- 89 I5 K Teff Effective temperature 91- 94 I4 K e_Teff Error in the effective temperature 96-100 A5 --- SpType Spectral type 102-107 F6.2 Rsun R Stellar radius 109-113 F5.2 Rsun e_R Error in the stellar radius 115-118 F4.2 [Lsun] LogL Decimal logarithm of the stellar luminosity 120-123 F4.2 [Lsun] e_LogL Lower error of LogL 125-128 F4.2 [Lsun] E_LogL Upper error of LogL 130 A1 --- l_t Upper limit flag for stellar age 131-135 F5.2 Myr t Stellar Age 137-140 F4.2 Myr e_t ? Lower error of the stellar age 142-145 F4.2 Myr E_t ? Upper error of the stellar age 147 A1 --- l_M Upper limit flag for stellar mass 148-152 F5.2 Msun M Stellar Mass 154-158 F5.2 Msun e_M ? Lower error of the stellar mass 160-163 F4.2 Msun E_M ? Upper error of the stellar mass 165 A1 --- Notes [1] Note (2) -------------------------------------------------------------------------------- Note (1): Distances have been estimated following Bailer-Jones et al., al., 2021AJ....161..147B 2021AJ....161..147B, Cat. I/352 Note (2): 1 indicates a Herbig Ae/Be with spurious parallax in Gaia EDR3 according to the criteria described in Sect. 2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Object Name of the Herbig Ae/Be star 18- 20 A3 --- MeeusGr Meeus Group (I, I?, II, II?) 22- 24 A3 --- JH-KGr JH-K Group (J H KS >Ks) 27 A1 --- l_logMacc Lower limit flag for logMacc 28- 32 F5.2 [Msun/yr] logMacc Decimal logarithm of the mass accretion rate 34- 37 F4.2 [Msun/yr] e_logMacc ? Lower error of logMacc 39- 42 F4.2 [Msun/yr] E_logMacc ? Upper error of logMacc 44 A1 --- l_logLacc Lower limit flag for logLacc 45- 49 F5.2 [Lsun] logLacc Decimal logarithm of the accretion luminosity 51- 54 F4.2 [Lsun] e_logLacc ? Lower error of logLacc 56- 59 F4.2 [Lsun] E_logLacc ? Upper error of logLacc 61- 65 F5.3 Msun Mdiskacc Disk mass estimated through the mass accretion rate and the age 67- 71 F5.2 um IR Wavelength at which the infrared excess starts 73- 78 F6.2 au rin Inner dust disk size 80- 85 F6.2 au e_rin Error in the inner dust disk size 87 A1 --- Notes [*] Note (1) -------------------------------------------------------------------------------- Note (1): * for Herbig Ae/Be stars for which their accretion-based disk masses were reestimated because their ages are larger than the time they need to reach the main sequence. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- Object Name of the Herbig Ae/Be star 15- 17 F3.1 --- Beta Dust opacity index Beta 19- 21 I3 K Td Dust temperature 23 A1 --- l_Mdiskfmm Upper limit flag for Mdiskfmm 24- 32 F9.6 Msun Mdiskfmm Disk mass estimated by (sub-) millimeter fluxes 34- 44 F11.8 Msun e_Mdiskfmm ? Error in the Mdiskfmm 46 I1 --- Npoints Number of photometric points (in the sub-millimeter region) used in the fit 48- 57 A10 --- Ref References of (sub-) millimeter fluxes (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Sandell et al., 2011ApJ...727...26S 2011ApJ...727...26S 2 = Mannings et al., 1997ApJ...490..792M 1997ApJ...490..792M 3 = Guedel et al., 1989A&A...217L...9G 1989A&A...217L...9G 4 = Acke et al., 2004A&A...426..151A 2004A&A...426..151A 5 = Pericaud et al., 2017A&A...600A..62P 2017A&A...600A..62P 6 = Henning et al., 1994A&A...291..546H 1994A&A...291..546H 7 = Hillenbrand et al., 1992ApJ...397..613H 1992ApJ...397..613H 8 = Mendigutia et al., 2012A&A...543A..59M 2012A&A...543A..59M 9 = Ginsburg et al., 2013ApJS..208...14G 2013ApJS..208...14G, Cat. J/ApJS/208/14 10 = Planck Collaboration, 2014A&A...571A..29P 2014A&A...571A..29P, Cat. VIII/91 11 = Sylvester et al., 1996MNRAS.279..915S 1996MNRAS.279..915S 12 = Barenfeld et al., 2016ApJ...827..142B 2016ApJ...827..142B, Cat. J/ApJ/827/142 13 = Meeus et al., 2012A&A...544A..78M 2012A&A...544A..78M 14 = Mannings et al., 1994MNRAS.271..587M 1994MNRAS.271..587M 15 = Di Francesco et al., 2008ApJS..175..277D 2008ApJS..175..277D, Cat. J/ApJS/175/277 16 = Mannings et al., 2000ApJ...529..391M 2000ApJ...529..391M 17 = Pezzuto et al., 1997ApJ...485..290P 1997ApJ...485..290P 19 = Kraus et al., 2017ApJ...848L..11K 2017ApJ...848L..11K 20 = Pietu et al., 2006A&A...460L..43P 2006A&A...460L..43P 21 = Pietu et al., 2003A&A...398..565P 2003A&A...398..565P 22 = Sylvester et al., 2001MNRAS.327..133S 2001MNRAS.327..133S 23 = Sheret et al., 2004MNRAS.348.1282S 2004MNRAS.348.1282S 24 = Cotten et al., 2016ApJS..225...15C 2016ApJS..225...15C, Cat. J/ApJS/225/15 25 = Henning et al., 1993A&A...276..129H 1993A&A...276..129H 26 = Ribas et al, 2017ApJ...849...63R 2017ApJ...849...63R, Cat. J/ApJ/849/63 27 = Natta et al., 1997ApJ...491..885N 1997ApJ...491..885N 28 = Planck Collaboration, 2018A&A...619A..94P 2018A&A...619A..94P, Cat. J/A+A/619/A94 29 = Urquhart et al., 2014MNRAS.443.1555U 2014MNRAS.443.1555U, Cat. J/MNRAS/443/1555 30 = Enoch et al., 2008ApJ...684.1240E 2008ApJ...684.1240E, Cat. J/ApJ/684/1240 31 = Boissier et al., 2011A&A...531A..50B 2011A&A...531A..50B, Cat. J/A+A/531/A50 32 = Natta et al., 2000prpl.conf..559N 33 = Alonso-Albi et al., 2009A&A...497..117A 2009A&A...497..117A 34 = Reipurth et al., 1993A&A...273..221R 1993A&A...273..221R 35 = Giannini et al., 1996rdfs.conf...27G 36 = Mairs et al., 2016MNRAS.461.4022M 2016MNRAS.461.4022M, Cat. J/MNRAS/461/4022 -------------------------------------------------------------------------------- Acknowledgements: Jorge Guzman Diaz, jguzman(at)cab.inta-csic.es Centro de Astrobilogia (INTA-CSIC)
(End) Jorge Guzman Diaz [INTA-CSIC], Patricia Vannier [CDS] 28-Apr-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line