J/A+A/650/A182 Homogeneous study of Herbig Ae/Be stars (Guzman-Diaz+, 2021)
Homogeneous study of Herbig Ae/Be stars from spectral energy distributions and
Gaia EDR3.
Guzman-Diaz J., Mendigutia I., Montesinos B., Oudmaijer R.D., Vioque M.,
Rodrigo C., Solano E., Meeus G., Marcos-Arenal P.
<Astron. Astrophys. 650, A182 (2021)>
=2021A&A...650A.182G 2021A&A...650A.182G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, pre-main sequence ; Stars, emission ;
Effective temperatures ; Photometry ; Stars, distances ;
Stars, ages ; Stars, masses
Keywords: protoplanetary disks - stars: pre-main sequence -
stars: variables: T Tauri, Herbig Ae/Be - virtual observatory tools -
stars: fundamental parameters - astronomical data bases
Abstract:
Herbig Ae/Be stars (HAeBes) have so far been studied based on
relatively small samples that are scattered throughout the sky. Their
fundamental stellar and circumstellar parameters and statistical
properties were derived with heterogeneous approaches before Gaia.
Our main goal is to contribute to the study of HAeBes from the largest
sample of such sources to date, for which stellar and circumstellar
properties have been determined homogeneously from the analysis of the
spectral energy distributions (SEDs) and Gaia EDR3 parallaxes and
photometry.
Multiwavelength photometry was compiled for 209 bona fide HAeBes for
which Gaia EDR3 distances were estimated. Using the Virtual
Observatory SED Analyser (VOSA), photospheric models were fit to the
optical SEDs to derive stellar parameters, and the excesses at
infrared (IR) and longer wavelengths were characterized to derive
several circumstellar properties. A statistical analysis was carried
out to show the potential use of such a large dataset.
The stellar temperature, luminosity, radius, mass, and age were
derived for each star based on optical photometry. In addition, their
IR SEDs were classified according to two different schemes, and their
mass accretion rates, disk masses, and the sizes of the inner dust
holes were also estimated uniformly. The initial mass function fits
the stellar mass distribution of the sample within
2<Mstar/M☉<12. In this aspect, the sample is therefore
representative of the HAeBe regime and can be used for statistical
purposes when it is taken into account that the boundaries are not
well probed. Our statistical study does not reveal any connection
between the SED shape from the Meeus et al., 2001A&A...365..476M 2001A&A...365..476M
classification and the presence of transitional disks, which are
identified here based on the SEDs that show an IR excess starting at
the K band or longer wavelengths. In contrast, only ∼28% of the HAeBes
have transitional disks, and the related dust disk holes are more
frequent in HBes than in HAes (∼34% vs 15%). The relatively small
inner disk holes and old stellar ages estimated for most transitional
HAes indicate that photoevaporation cannot be the main mechanism
driving disk dissipation in these sources. In contrast, the inner disk
holes and ages of most transitional HBes are consistent with the
photoevaporation scenario, although these results alone do not
unambiguously discard other disk dissipation mechanisms.
The complete dataset is available online through a Virtual
Observatory- compliant archive, representing the most recent reference
for statistical studies on the HAeBe regime. VOSA is a complementary
tool for the future characterization of newly identified HAeBes.
Description:
Table B.1 lists the coordinates, Gaia EDR3 distances, stellar
parameters derived from SED fitting for the 209 Herbig Ae/Be stars in
the sample.
Table B.2 lists circumstellar properties for that sample, including
two classifications of the SED shape, stellar accretion rates and
accretion luminosities, and disk masses inferred from accretion.
Table B.3 lists the disk masses estimated from (sub-) millimeter
continuum data available in the literature for a sub-sample including
73 Herbig Ae/Be stars.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 165 209 Stellar parameters
tableb2.dat 87 209 SED classifications and disk parameters
tableb3.dat 57 73 Disk masses derived by millimeter fluxes
--------------------------------------------------------------------------------
See also:
I/350 : Gaia EDR3 (Gaia Collaboration, 2020)
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Object Name of the Herbig Ae/Be star
18- 19 I2 h RAh Right ascension (ICRS) at epoch 2016
21- 22 I2 min RAm Right ascension (ICRS) at epoch 2016
24- 27 F4.1 s RAs Right ascension (ICRS) at epoch 2016
29 A1 --- DE- Declination sign (ICRS) at epoch 2016
30- 31 I2 deg DEd Declination (ICRS) at epoch 2016
33- 34 I2 arcmin DEm Declination (ICRS) at epoch 2016
36- 37 I2 arcsec DEs Declination (ICRS) at epoch 2016
39- 46 F8.2 pc d Distance (1)
48- 54 F7.2 pc e_d Lower error on the Distance
56- 62 F7.2 pc E_d Upper error on the Distance
64- 74 A11 K DeltaT Input range of temperature of VOSA
76- 78 F3.1 mag Av Visual extinction
80- 83 F4.2 mag e_Av Error in the visual extinction
85- 89 I5 K Teff Effective temperature
91- 94 I4 K e_Teff Error in the effective temperature
96-100 A5 --- SpType Spectral type
102-107 F6.2 Rsun R Stellar radius
109-113 F5.2 Rsun e_R Error in the stellar radius
115-118 F4.2 [Lsun] LogL Decimal logarithm of the stellar luminosity
120-123 F4.2 [Lsun] e_LogL Lower error of LogL
125-128 F4.2 [Lsun] E_LogL Upper error of LogL
130 A1 --- l_t Upper limit flag for stellar age
131-135 F5.2 Myr t Stellar Age
137-140 F4.2 Myr e_t ? Lower error of the stellar age
142-145 F4.2 Myr E_t ? Upper error of the stellar age
147 A1 --- l_M Upper limit flag for stellar mass
148-152 F5.2 Msun M Stellar Mass
154-158 F5.2 Msun e_M ? Lower error of the stellar mass
160-163 F4.2 Msun E_M ? Upper error of the stellar mass
165 A1 --- Notes [1] Note (2)
--------------------------------------------------------------------------------
Note (1): Distances have been estimated following Bailer-Jones et al.,
al., 2021AJ....161..147B 2021AJ....161..147B, Cat. I/352
Note (2): 1 indicates a Herbig Ae/Be with spurious parallax in Gaia
EDR3 according to the criteria described in Sect. 2
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Object Name of the Herbig Ae/Be star
18- 20 A3 --- MeeusGr Meeus Group (I, I?, II, II?)
22- 24 A3 --- JH-KGr JH-K Group (J H KS >Ks)
27 A1 --- l_logMacc Lower limit flag for logMacc
28- 32 F5.2 [Msun/yr] logMacc Decimal logarithm of the
mass accretion rate
34- 37 F4.2 [Msun/yr] e_logMacc ? Lower error of logMacc
39- 42 F4.2 [Msun/yr] E_logMacc ? Upper error of logMacc
44 A1 --- l_logLacc Lower limit flag for logLacc
45- 49 F5.2 [Lsun] logLacc Decimal logarithm of the
accretion luminosity
51- 54 F4.2 [Lsun] e_logLacc ? Lower error of logLacc
56- 59 F4.2 [Lsun] E_logLacc ? Upper error of logLacc
61- 65 F5.3 Msun Mdiskacc Disk mass estimated through the
mass accretion rate and the age
67- 71 F5.2 um IR Wavelength at which the infrared excess
starts
73- 78 F6.2 au rin Inner dust disk size
80- 85 F6.2 au e_rin Error in the inner dust disk size
87 A1 --- Notes [*] Note (1)
--------------------------------------------------------------------------------
Note (1): * for Herbig Ae/Be stars for which their accretion-based disk masses
were reestimated because their ages are larger than the time they need to
reach the main sequence.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Object Name of the Herbig Ae/Be star
15- 17 F3.1 --- Beta Dust opacity index Beta
19- 21 I3 K Td Dust temperature
23 A1 --- l_Mdiskfmm Upper limit flag for Mdiskfmm
24- 32 F9.6 Msun Mdiskfmm Disk mass estimated by (sub-) millimeter
fluxes
34- 44 F11.8 Msun e_Mdiskfmm ? Error in the Mdiskfmm
46 I1 --- Npoints Number of photometric points (in the
sub-millimeter region) used in the fit
48- 57 A10 --- Ref References of (sub-) millimeter fluxes (1)
--------------------------------------------------------------------------------
Note (1): References as follows:
1 = Sandell et al., 2011ApJ...727...26S 2011ApJ...727...26S
2 = Mannings et al., 1997ApJ...490..792M 1997ApJ...490..792M
3 = Guedel et al., 1989A&A...217L...9G 1989A&A...217L...9G
4 = Acke et al., 2004A&A...426..151A 2004A&A...426..151A
5 = Pericaud et al., 2017A&A...600A..62P 2017A&A...600A..62P
6 = Henning et al., 1994A&A...291..546H 1994A&A...291..546H
7 = Hillenbrand et al., 1992ApJ...397..613H 1992ApJ...397..613H
8 = Mendigutia et al., 2012A&A...543A..59M 2012A&A...543A..59M
9 = Ginsburg et al., 2013ApJS..208...14G 2013ApJS..208...14G, Cat. J/ApJS/208/14
10 = Planck Collaboration, 2014A&A...571A..29P 2014A&A...571A..29P, Cat. VIII/91
11 = Sylvester et al., 1996MNRAS.279..915S 1996MNRAS.279..915S
12 = Barenfeld et al., 2016ApJ...827..142B 2016ApJ...827..142B, Cat. J/ApJ/827/142
13 = Meeus et al., 2012A&A...544A..78M 2012A&A...544A..78M
14 = Mannings et al., 1994MNRAS.271..587M 1994MNRAS.271..587M
15 = Di Francesco et al., 2008ApJS..175..277D 2008ApJS..175..277D, Cat. J/ApJS/175/277
16 = Mannings et al., 2000ApJ...529..391M 2000ApJ...529..391M
17 = Pezzuto et al., 1997ApJ...485..290P 1997ApJ...485..290P
19 = Kraus et al., 2017ApJ...848L..11K 2017ApJ...848L..11K
20 = Pietu et al., 2006A&A...460L..43P 2006A&A...460L..43P
21 = Pietu et al., 2003A&A...398..565P 2003A&A...398..565P
22 = Sylvester et al., 2001MNRAS.327..133S 2001MNRAS.327..133S
23 = Sheret et al., 2004MNRAS.348.1282S 2004MNRAS.348.1282S
24 = Cotten et al., 2016ApJS..225...15C 2016ApJS..225...15C, Cat. J/ApJS/225/15
25 = Henning et al., 1993A&A...276..129H 1993A&A...276..129H
26 = Ribas et al, 2017ApJ...849...63R 2017ApJ...849...63R, Cat. J/ApJ/849/63
27 = Natta et al., 1997ApJ...491..885N 1997ApJ...491..885N
28 = Planck Collaboration, 2018A&A...619A..94P 2018A&A...619A..94P, Cat. J/A+A/619/A94
29 = Urquhart et al., 2014MNRAS.443.1555U 2014MNRAS.443.1555U, Cat. J/MNRAS/443/1555
30 = Enoch et al., 2008ApJ...684.1240E 2008ApJ...684.1240E, Cat. J/ApJ/684/1240
31 = Boissier et al., 2011A&A...531A..50B 2011A&A...531A..50B, Cat. J/A+A/531/A50
32 = Natta et al., 2000prpl.conf..559N
33 = Alonso-Albi et al., 2009A&A...497..117A 2009A&A...497..117A
34 = Reipurth et al., 1993A&A...273..221R 1993A&A...273..221R
35 = Giannini et al., 1996rdfs.conf...27G
36 = Mairs et al., 2016MNRAS.461.4022M 2016MNRAS.461.4022M, Cat. J/MNRAS/461/4022
--------------------------------------------------------------------------------
Acknowledgements:
Jorge Guzman Diaz, jguzman(at)cab.inta-csic.es
Centro de Astrobilogia (INTA-CSIC)
(End) Jorge Guzman Diaz [INTA-CSIC], Patricia Vannier [CDS] 28-Apr-2021