J/A+A/649/A60      Assignment & prediction of formaldoxime (CH2NOH) (Zou+, 2021)

Millimeter- and subillimeter-wave spectrum of trans-formaldoxime (CH2NOH). Zou L., Guillemin J.-C., Motiyenko R.A., Margules L. <Astron. Astrophys. 649, A60 (2021)> =2021A&A...649A..60Z 2021A&A...649A..60Z (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Spectroscopy Keywords: astrochemistry - molecular data - submillimeter: ISM - methods: laboratory: molecular Abstract: Among the six atoms of N-containing molecules with the formula of CH3NO, only formamide (H2NCHO), the most stable structural isomer, has been detected in the interstellar medium (ISM). The formaldoxime isomer may be formed, for example, by the reaction of formaldehyde (H2CO) or methanimine (H2CNH) and hydroxylamine (H2NOH), which are all detected in the ISM. The lack of high accuracy millimeter- and submillimeter-wave measurements hinders the astronomical search for formaldoxime. The aim of this work is to provide the direct laboratory measurement of the millimeter- and submillimeter-wave spectrum of trans-formaldoxime. Formaldoxime was synthesized and its rotational spectrum was recorded at room temperature in a glass flow cell using the millimeter- and submillimeter-wave spectrometer in Lille. The SPFIT program in the CALPGM suite was used to fit the spectrum. Rotational lines of trans-formaldoxime from both the ground state and v12=1 vibrational excited states have been measured and assigned from 150 to 660GHz. Spectroscopic constants were derived to the tenth order using both Watson's A and S reduction Hamiltonian. Description: The measure frequency line list and the prediction of formaldoxime (CH2NOH) for the ground state and v12=1 vibrationally excited state. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table4.dat 75 2232 Measured frequency CH2NOH g.s. table5.dat 74 1307 Measured frequency CH2NOH v12=1 tablea1.dat 75 11237 *Prediction of CH2NOH pure rotational tablea2.dat 77 46422 *Prediction of CH2NOH hyperfine -------------------------------------------------------------------------------- Note on tablea1.dat, tablea2.dat: output using the CALPGM/SPCAT format. Documentation can be found in https://spec.jpl.nasa.gov/ftp/pub/calpgm/spinv.pdf. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 3 I2 -- J" Quantum number J of the upper state 5- 6 I2 -- Ka" Quantum number Ka of the upper state 8- 9 I2 -- Kc" Quantum number Kc of the upper state 11- 12 I2 -- vdummy" Dummy quantum number v of the upper state (1) 14- 15 I2 -- F" Quantum number F of the upper state 17- 18 I2 -- J' Quantum number J of the lower state 20- 21 I2 -- Ka' Quantum number Ka of the lower state 23- 24 I2 -- Kc' Quantum number Kc of the lower state 26- 27 I2 -- vdummy' Dummy Quantum number v of the lower state (1) 29- 30 I2 -- F' Quantum number F of the lower state 31- 42 F12.3 MHz Freq Line frequency observed 43- 47 F5.2 MHz RelInt Relative intensity for blended lines (2) 48- 56 F9.5 MHz Diff Frequency difference (obs - calc) 57- 62 F6.3 MHz Unc Line frequency uncertainty 63- 75 A13 -- Ref Reference of the observed line (3) -------------------------------------------------------------------------------- Note (1): The dummy quantum number (act as a vibrational state) is used to combine the fit of the pure rotational lines (vdummy=0) & partially resolved hyperfine lines (vdummy=1). It does not have physical meaning, and is removed in the prediction files tablea1.dat and tablea2.deg. The quantum numbers are in Pickett's format, and therefore for vdummy=0 lines F=J is always true. Note (2): For single lines, the relative intensity is always unity (1.00). For blended lines, the sum of the relative intensities is unity (1.00). Note (3): Frequencies are taken from the following references: Levine 1962 = Journal of Molecular Spectroscopy, 1962, 8, 276-284 Klesing 1990 = Zeitschrift fur Naturforschung A, 1990, 45, 817-826 Zou 2021 = this work -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 3- 13 F11.4 MHz Freq [1455.7529/999659.1104] Frequency of the line 14- 21 F8.4 MHz e_Freq Estimated error of Freq (1) 23- 29 F7.4 [nm+2.MHz] logInt Base 10 log of the integrated intensity 31 I1 --- DOF [3] Degrees of freedom 33- 41 F9.4 cm-1 Elo Lower state energy 42- 44 I3 --- Gup Upper state degeneracy 47- 51 I5 --- Tag [45999] Species tag 52- 55 I4 --- QNFMT [1404] Quantum number (QN) format identifier 56- 57 I2 --- J" [1/50] QN J of the upper state 58- 59 I2 --- Ka" [0/33] QN Ka of the upper state (1) 60- 61 I2 --- Kc" [0/49] QN Kc of the upper state 63 I1 --- v" [0/1] QN v of the upper state (0 for gs & 1 for v12=1) 68- 69 I2 --- J' [0/50] QN J of the lower state 70- 71 I2 --- Ka' [0/33] QN Ka of the lower state 72- 73 I2 --- Kc' [0/50] QN Kc of the lower state 75 I1 --- v' [0/1] QN v of the lower state (0 for gs & 1 for v12=1) -------------------------------------------------------------------------------- Note (1): prediction up to J=50. Lines with Ka"≥25 or e_Freq>1.0MHz should be treated with caution. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 3- 13 F11.4 MHz Freq [4590.4839/999661.3492] Frequency of the line 14- 21 F8.4 MHz e_Freq Estimated error on Freq (1) 22- 29 F8.4 [nm+2.MHz] logInt Base 10 log of the integrated intensity 31 I1 --- DOF [3] Degrees of freedom 32- 41 F10.4 cm-1 Elo Lower state energy 42- 44 I3 --- Gup Upper state degeneracy 47- 51 I5 --- Tag [45999] Species tag 52- 55 I4 --- QNFMT [1405] Quantum number (QN) format identifier 56- 57 I2 --- J" [1/51] QN J of the upper state 58- 59 I2 --- Ka" [0/31] QN Ka of the upper state (1) 60- 61 I2 --- Kc" [0/50] QN Kc of the upper state 63 I1 --- v" [0/1] QN v of the upper state (0 for gs & 1 for v12=1) 64- 65 I2 --- F" [0/50] QN F of the lower state 68- 69 I2 --- J' [0/51] QN J of the lower state 70- 71 I2 --- Ka' [0/31] QN Ka of the lower state 72- 73 I2 --- Kc' [0/51] QN Kc of the lower state 75 I1 --- v' [0/1] QN v of the lower state (0 for gs & 1 for v12=1) 76- 77 I2 --- F' [0/50] QN F of the lower state -------------------------------------------------------------------------------- Note (1): prediction up to J=50. Lines with Ka"≥25 or e_Freq>1.0MHz should be treated with caution. -------------------------------------------------------------------------------- Acknowledgements: Luyao Zou, luyao.zou(at)univ-lille.fr
(End) Luyao Zou [Univ. Lille], Patricia Vannier [CDS] 16-Apr-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line