J/A+A/649/A155 Impact of core and shell masses on SNe Ia (Gronow+, 2021)
Double detonations of sub-MCh CO white dwarfs:
variations in Type Ia supernovae due to different core and He shell yieldes.
Gronow S., Collins C.E., Sim S.A., Roepke F.K.
<Astron. Astrophys. 649, A155 (2021)>
=2021A&A...649A.155G 2021A&A...649A.155G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, white dwarf ; Supernovae ; Abundances
Keywords: supernovae: general - white dwarfs - radiative transfer -
nuclear reactions - nucleosynthesis - abundances -
methods: numerical - hydrodynamics
Abstract:
Sub-Chandrasekhar yield carbon-oxygen white dwarfs with a surface
helium shell have been proposed as progenitors of Type Ia supernovae
(SNe Ia). If true, the resulting thermonuclear explosions should be
able to account for at least some of the range of SNe Ia observables.
To study this, we conducted a parameter study based on
three-dimensional simulations of double detonations in carbon-oxygen
white dwarfs with a helium shell, assuming different core and shell
yieldes. An admixture of carbon to the shell and solar metallicity are
included in the models. The hydrodynamic simulations were carried out
using the Arepo code. This allowed us to follow the helium shell
detonation with high numerical resolution, and this improves the
reliability of predicted nucleosynthetic shell detonation yields. The
addition of carbon to the shell leads to a lower production of
56Ni, while including solar metallicity increases the production
of intermediate yield elements. The production of higher mass elements
is further shifted to stable isotopes at solar metallicity. Moreover,
we find different core detonation ignition mechanisms depending on the
core and shell yield configuration. This has an influence on the ejecta
structure. We present the bolometric light curves predicted from our
explosion simulations using the Monte Carlo radiative transfer code
Artis and make comparisons with bolometric SNe Ia data. The bolometric
light curves of our models show a range of brightnesses, which is able
to account for subluminous to normal brightness SNe Ia. We show the
model bolometric width-luminosity relation compared to data for a
range of model viewing angles. We find that, on average, our brighter
models lie within the observed data. The ejecta asymmetries produce a
wide distribution of observables, which might account for outliers in
the data. However, the models overestimate the extent of this compared
to data. We also find that the bolometric decline rate over 40 days,
Δm40(bol), appears systematically faster than data.
Description:
Files table1.dat to table4.dat list the nucleosynthesis yields of all
models. All yieldes are given in solar masses. The isotope name is
given in the first column. This is followed by the nucleosynthetic
yields originating from the shell and core detonation for each model.
File table1.dat gives the stable nuclides, radioactive nuclides with
lifetimes lower than 2Gyr decayed to stability and radioactive
nuclides with longer lifetimes at time t=100s for Models M0810r,
M08_05, M08_03, M0910r, M09_05, and M09_03.
File table2.dat gives the stable nuclides, radioactive nuclides with
lifetimes lower than 2Gyr decayed to stability and radioactive
nuclides with longer lifetimes at time t=100s for Models M10_10,
M10_05, M10_03, M10_02, and M11_05.
File table3.dat lists the nucleosynthesis yields of selected
radioactive nuclides at t=100s for Models M0810r, M08_05, M08_03,
M0910r, M09_05, and M09_03.
File table4.dat lists the nucleosynthesis yields of selected
radioactive nuclides at t=100s for Models M10_10, M10_05, M10_03,
M10_02, and M11_05.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 112 68 Asymptotic yields for Models M08* and M09*
table2.dat 94 68 Asymptotic yields for Models M10* and M11_05
table3.dat 112 39 Yields of radioactive nuclides of M08* and M09*
table4.dat 94 39 Yields of radioactive nuclides of M10* and M11*
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- Name Isotope name
6- 13 E8.3 Msun M08-10rs M08_10r shell yield
15- 22 E8.3 Msun M08-10rc M08_10r core yield
24- 31 E8.3 Msun M08-05rs M08_05 shell yield
33- 40 E8.3 Msun M08-05rc M08_05 core yield
42- 49 E8.3 Msun M08-03rs M08_03 shell yield
51- 58 E8.3 Msun M08-03rc M08_03 core yield
60- 67 E8.3 Msun M09-10rs M09_10r shell yield
69- 76 E8.3 Msun M09-10rc M09_10r core yield
78- 85 E8.3 Msun M09-05rs M09_05 shell yield
87- 94 E8.3 Msun M09-05rc M09_05 core yield
96-103 E8.3 Msun M09-03rs M09_03 shell yield
105-112 E8.3 Msun M09-03rc M09_03 core yield
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- Name Isotope name
6- 13 E8.3 Msun M10-10s M10_10 shell yield
15- 22 E8.3 Msun M10-10c M10_10 core yield
24- 31 E8.3 Msun M10-05s M10_05 shell yield
33- 40 E8.3 Msun M10-05c M10_05 core yield
42- 49 E8.3 Msun M10-03s M10_03 shell yield
51- 58 E8.3 Msun M10-03c M10_03 core yield
60- 67 E8.3 Msun M10-02s M10_02 shell yield
69- 76 E8.3 Msun M10-02c M10_02 core yield
78- 85 E8.3 Msun M11-05s M11_05 shell yield
87- 94 E8.3 Msun M11-05c M11_05 core yield
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- Name Isotope name
6- 13 E8.3 Msun M08-10rs M08_10r shell yield
15- 22 E8.3 Msun M08-10rc M08_10r core yield
24- 31 E8.3 Msun M08-05rs M08_05 shell yield
33- 40 E8.3 Msun M08-05rc M08_05 core yield
42- 49 E8.3 Msun M08-03rs M08_03 shell yield
51- 58 E8.3 Msun M08-03rc M08_03 core yield
60- 67 E8.3 Msun M09-10rs M09_10r shell yield
69- 76 E8.3 Msun M09-10rc M09_10r core yield
78- 85 E8.3 Msun M09-05rs M09_05 shell yield
87- 94 E8.3 Msun M09-05rc M09_05 core yield
96-103 E8.3 Msun M09-03rs M09_03 shell yield
105-112 E8.3 Msun M09-03rc M09_03 core yield
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- Name Isotope name
6- 13 E8.3 Msun M10-10s M10_10 shell yield
15- 22 E8.3 Msun M10-10c M10_10 core yield
24- 31 E8.3 Msun M10-05s M10_05 shell yield
33- 40 E8.3 Msun M10-05c M10_05 core yield
42- 49 E8.3 Msun M10-03s M10_03 shell yield
51- 58 E8.3 Msun M10-03c M10_03 core yield
60- 67 E8.3 Msun M10-02s M10_02 shell yield
69- 76 E8.3 Msun M10-02c M10_02 core yield
78- 85 E8.3 Msun M11-05s M11_05 shell yield
87- 94 E8.3 Msun M11-05c M11_05 core yield
--------------------------------------------------------------------------------
Acknowledgements:
Sabrina Gronow, sabrina.gronow(at)h-its.org
(End) Sabrina Gronow [IMPRS-HD, Heidelberg], Patricia Vannier [CDS] 19-Mar-2021