J/A+A/647/A155  H2:H2 inelastic collisions rate coefficients (Hernandez+, 2021)

Rate coefficients for H2:H2 inelastic collisions in the ground vibrational state from 10 to 1000 K. Hernandez M.I., Tejeda G., Fernandez J.M., Montero S. <Astron. Astrophys. 647, A155 (2021)> =2021A&A...647A.155H 2021A&A...647A.155H (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: molecular processes Abstract: In this work, we present a pruned set of state-to-state rate coefficients (STS rates) for inelastic H2:H2 collisions in the thermal range from 10 to 1000K. The set includes all relevant rates needed for diagnostics based on the simulation of quadrupole infrared spectra of H2. The reported set was obtained from a quantum scattering close-coupling calculation employing a recent version of the MOLSCAT code, a high-level potential energy surface, and rotational energies of the H2 molecules with spectroscopic accuracy. These improvements have led to a significant increase in the accuracy with respect to previous computational results. The accuracy of the present STS rates is tested against recently reported experimental rates. Most dominant rates agree with the experiment within a 2σ uncertainty (2 to 6%). In addition to the tables given in the main text, three machine-readable tables are available at the CDS. These tables include all the relevant numerical results of the paper, namely, the excitation and de-excitation STS rates for H2:H2 inelastic collisions at selected temperatures between 10 and 1000 K, and their functional description for interpolation at any intermediate temperature. Description: In this work the relevant STS rates for H2:H2 inelastic collisions between 10 and 1000K were calculated employing a recent version of the H2-H2 PES and of the MOLSCAT code. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 280 60 Calculated STS-rates for deexcitation and excitation H2:H2 inelastic collisions table2.dat 103 30 Parametric description of calculated deexcitation STS rates for H2:H2 inelastic collisions between 10 and 200K table3.dat 56 30 Parametric description of calculated deexcitation STS rates for H2:H2 inelastic collisions between 100 and 1000K -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- I1 Initial rotational state J=I1 (1) 3 I1 --- I2 Initial rotational state J=I2 (1) 5 I1 --- F1 Final rotational state J=F1 (1) 7 I1 --- F2 Final rotational state J=F2 (1) 9- 15 F7.2 K Gap Energy gap of the collision 19- 28 E10.4 m3/s STS-10 STS-rate at T=10K (1) 31- 40 E10.4 m3/s STS-20 STS-rate at T=20K (1) 43- 52 E10.4 m3/s STS-30 STS-rate at T=30K (1) 55- 64 E10.4 m3/s STS-40 STS-rate at T=40K (1) 67- 76 E10.4 m3/s STS-50 STS-rate at T=50K (1) 79- 88 E10.4 m3/s STS-60 STS-rate at T=60K (1) 91-100 E10.4 m3/s STS-70 STS-rate at T=70K (1) 103-112 E10.4 m3/s STS-80 STS-rate at T=80K (1) 115-124 E10.4 m3/s STS-90 STS-rate at T=90K (1) 127-136 E10.4 m3/s STS-100 STS-rate at T=100K (1) 139-148 E10.4 m3/s STS-120 STS-rate at T=120K (1) 151-160 E10.4 m3/s STS-140 STS-rate at T=140K (1) 163-172 E10.4 m3/s STS-160 STS-rate at T=160K (1) 175-184 E10.4 m3/s STS-180 STS-rate at T=180K (1) 187-196 E10.4 m3/s STS-200 STS-rate at T=200K (1) 199-208 E10.4 m3/s STS-225 STS-rate at T=225K (1) 211-220 E10.4 m3/s STS-250 STS-rate at T=250K (1) 223-232 E10.4 m3/s STS-275 STS-rate at T=275K (1) 235-244 E10.4 m3/s STS-300 STS-rate at T=300K (1) 247-256 E10.4 m3/s STS-500 STS-rate at T=500K (1) 259-268 E10.4 m3/s STS-750 STS-rate at T=750K (1) 271-280 E10.4 m3/s STS-1000 STS-rate at T=1000K (1) -------------------------------------------------------------------------------- Note (1): The first 30 data lines are the "down" rates (deexcitation) while the last 30 data lines are the "up" rates (excitation). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2 I1 --- I1 Initial rotational state J=I1 (1) 4 I1 --- I2 Initial rotational state J=I2 (1) 6 I1 --- F1 Final rotational state J=F1 (1) 8 I1 --- F2 Final rotational state J=F2 (1) 11- 17 F7.2 K Gap Energy gap of the collision 21- 29 F9.5 --- a0 Polinomial coefficient (1) 32- 41 F10.7 --- a1 Polinomial coefficient (1) 45- 54 F10.8 --- a2 Polinomial coefficient (1) 57- 67 E11.5 --- a3 Polinomial coefficient (1) 72- 81 E10.5 --- a4 Polinomial coefficient (1) 85- 96 E12.5 --- a5 Polinomial coefficient (1) 100-103 F4.2 10-20m3/s Spol Standard error estimate of polynomial fit (10-200K) ------------------------------------------------------------------------------- Note (1): Polynomial fit: ki1i2f1f2= Sum(m=0)(m=5) am*Tm, with T=temperature in kelvin. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2 I1 --- I1 Initial rotational state J=I1 4 I1 --- I2 Initial rotational state J=I2 6 I1 --- F1 Final rotational state J=F1 8 I1 --- F2 Final rotational state J=F2 12- 18 F7.2 K Gap Energy gap of the collision 22- 29 F8.4 10-20m3/s A Arrhenius-Kooij coefficient (1) 32- 38 F7.5 --- B Arrhenius-Kooij exponent (1) 42- 49 F8.4 K C Arrhenius-Kooij temperature (1) 53- 56 F4.2 10-20m3/s SAK Standard error estimate of Arrhenius-Kooij fit; 100-1000K (1) -------------------------------------------------------------------------------- Note (1): Arrhenius-Kooij fit: ki1i2f1f2 = A*((300/T)**-B)*exp(-C/T), with T = temperature in kelvin. -------------------------------------------------------------------------------- Acknowledgements: Salvador Montero, emsalvador(at)iem.cfmac.csic.es
(End) Patricia Vannier [CDS] 08-Feb-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line