J/A+A/647/A155 H2:H2 inelastic collisions rate coefficients (Hernandez+, 2021)
Rate coefficients for H2:H2 inelastic collisions in the ground vibrational
state from 10 to 1000 K.
Hernandez M.I., Tejeda G., Fernandez J.M., Montero S.
<Astron. Astrophys. 647, A155 (2021)>
=2021A&A...647A.155H 2021A&A...647A.155H (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: molecular processes
Abstract:
In this work, we present a pruned set of state-to-state rate
coefficients (STS rates) for inelastic H2:H2 collisions in the
thermal range from 10 to 1000K. The set includes all relevant rates
needed for diagnostics based on the simulation of quadrupole infrared
spectra of H2.
The reported set was obtained from a quantum scattering close-coupling
calculation employing a recent version of the MOLSCAT code, a
high-level potential energy surface, and rotational energies of the
H2 molecules with spectroscopic accuracy. These improvements have
led to a significant increase in the accuracy with respect to previous
computational results. The accuracy of the present STS rates is tested
against recently reported experimental rates. Most dominant rates
agree with the experiment within a 2σ uncertainty (2 to 6%).
In addition to the tables given in the main text, three
machine-readable tables are available at the CDS. These tables include
all the relevant numerical results of the paper, namely, the
excitation and de-excitation STS rates for H2:H2 inelastic collisions
at selected temperatures between 10 and 1000 K, and their functional
description for interpolation at any intermediate temperature.
Description:
In this work the relevant STS rates for H2:H2 inelastic collisions
between 10 and 1000K were calculated employing a recent version of
the H2-H2 PES and of the MOLSCAT code.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 280 60 Calculated STS-rates for deexcitation and
excitation H2:H2 inelastic collisions
table2.dat 103 30 Parametric description of calculated
deexcitation STS rates for H2:H2 inelastic
collisions between 10 and 200K
table3.dat 56 30 Parametric description of calculated
deexcitation STS rates for H2:H2 inelastic
collisions between 100 and 1000K
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 I1 --- I1 Initial rotational state J=I1 (1)
3 I1 --- I2 Initial rotational state J=I2 (1)
5 I1 --- F1 Final rotational state J=F1 (1)
7 I1 --- F2 Final rotational state J=F2 (1)
9- 15 F7.2 K Gap Energy gap of the collision
19- 28 E10.4 m3/s STS-10 STS-rate at T=10K (1)
31- 40 E10.4 m3/s STS-20 STS-rate at T=20K (1)
43- 52 E10.4 m3/s STS-30 STS-rate at T=30K (1)
55- 64 E10.4 m3/s STS-40 STS-rate at T=40K (1)
67- 76 E10.4 m3/s STS-50 STS-rate at T=50K (1)
79- 88 E10.4 m3/s STS-60 STS-rate at T=60K (1)
91-100 E10.4 m3/s STS-70 STS-rate at T=70K (1)
103-112 E10.4 m3/s STS-80 STS-rate at T=80K (1)
115-124 E10.4 m3/s STS-90 STS-rate at T=90K (1)
127-136 E10.4 m3/s STS-100 STS-rate at T=100K (1)
139-148 E10.4 m3/s STS-120 STS-rate at T=120K (1)
151-160 E10.4 m3/s STS-140 STS-rate at T=140K (1)
163-172 E10.4 m3/s STS-160 STS-rate at T=160K (1)
175-184 E10.4 m3/s STS-180 STS-rate at T=180K (1)
187-196 E10.4 m3/s STS-200 STS-rate at T=200K (1)
199-208 E10.4 m3/s STS-225 STS-rate at T=225K (1)
211-220 E10.4 m3/s STS-250 STS-rate at T=250K (1)
223-232 E10.4 m3/s STS-275 STS-rate at T=275K (1)
235-244 E10.4 m3/s STS-300 STS-rate at T=300K (1)
247-256 E10.4 m3/s STS-500 STS-rate at T=500K (1)
259-268 E10.4 m3/s STS-750 STS-rate at T=750K (1)
271-280 E10.4 m3/s STS-1000 STS-rate at T=1000K (1)
--------------------------------------------------------------------------------
Note (1): The first 30 data lines are the "down" rates (deexcitation) while the
last 30 data lines are the "up" rates (excitation).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2 I1 --- I1 Initial rotational state J=I1 (1)
4 I1 --- I2 Initial rotational state J=I2 (1)
6 I1 --- F1 Final rotational state J=F1 (1)
8 I1 --- F2 Final rotational state J=F2 (1)
11- 17 F7.2 K Gap Energy gap of the collision
21- 29 F9.5 --- a0 Polinomial coefficient (1)
32- 41 F10.7 --- a1 Polinomial coefficient (1)
45- 54 F10.8 --- a2 Polinomial coefficient (1)
57- 67 E11.5 --- a3 Polinomial coefficient (1)
72- 81 E10.5 --- a4 Polinomial coefficient (1)
85- 96 E12.5 --- a5 Polinomial coefficient (1)
100-103 F4.2 10-20m3/s Spol Standard error estimate of polynomial fit
(10-200K)
-------------------------------------------------------------------------------
Note (1): Polynomial fit:
ki1i2f1f2= Sum(m=0)(m=5) am*Tm, with T=temperature in kelvin.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2 I1 --- I1 Initial rotational state J=I1
4 I1 --- I2 Initial rotational state J=I2
6 I1 --- F1 Final rotational state J=F1
8 I1 --- F2 Final rotational state J=F2
12- 18 F7.2 K Gap Energy gap of the collision
22- 29 F8.4 10-20m3/s A Arrhenius-Kooij coefficient (1)
32- 38 F7.5 --- B Arrhenius-Kooij exponent (1)
42- 49 F8.4 K C Arrhenius-Kooij temperature (1)
53- 56 F4.2 10-20m3/s SAK Standard error estimate of
Arrhenius-Kooij fit; 100-1000K (1)
--------------------------------------------------------------------------------
Note (1): Arrhenius-Kooij fit:
ki1i2f1f2 = A*((300/T)**-B)*exp(-C/T), with T = temperature in kelvin.
--------------------------------------------------------------------------------
Acknowledgements:
Salvador Montero, emsalvador(at)iem.cfmac.csic.es
(End) Patricia Vannier [CDS] 08-Feb-2021