J/A+A/646/A97       Molecular emission from the Perseus cloud   (Tafalla+, 2021)

Characterizing the emission from molecular clouds. Stratified random sampling of the Perseus cloud. Tafalla M., Usero A., Hacar A. <Astron. Astrophys. 646, A97 (2021)> =2021A&A...646A..97T 2021A&A...646A..97T (SIMBAD/NED BibCode)
ADC_Keywords: Molecular clouds ; Abundances Keywords: ISM: abundances - ISM: clouds - ISM: individual objects: Perseus Cloud - ISM: molecules - ISM: structure - Stars: formation Abstract: The traditional technique to characterize the structure of molecular clouds is mapping their line emission. We aim to test and apply a sampling technique that can characterize the line emission from a molecular cloud more efficiently than mapping. We have sampled the molecular emission from the Perseus cloud using the H2 column density as a proxy. We have divided the cloud into 10 logarithmically- spaced column density bins, and we have selected 10 random positions from each bin. The resulting 100 cloud positions have been observed with the IRAM 30m telescope covering the 3mm-wavelength band and parts of the 2mm and 1mm bands. We focus our analysis on the eleven molecular species (plus isotopologs) detected toward most column density bins. In all cases, the line intensity is tightly correlated with the H2 column density. For the CO isotopologs, the correlation is relatively flat, while for most dense gas tracers, the correlation is approximately linear. To reproduce these trends, we have developed a cloud model in which most species have abundance profiles characterized by an outer photo-dissociation edge and an inner freeze-out drop. With this model we determine that the intensity behavior of the dense gas tracers arises from a combination of excitation effects and molecular freeze out, with some modulation from optical depth. The quasi-linear dependence of the dense-gas tracer emission with H2 column density makes the gas at low column densities dominate the cloud- integrated emission. It also makes this emission proportional to the cloud mass inside the photodissociation edge. Stratified random sampling is an efficient technique to characterize the emission from molecular clouds. Despite its complex appearance, the molecular emission from Perseus presents a relatively simple behavior that, from a limited comparison with other clouds, seems to reflect a general pattern. Description: This dataset contains coordinates of the 100 Perseus positions selected by using stratified random sampling, their estimated H2 column density, and the velocity-integrated intensities for the brightest lines in the 3mm wavelength band as observed with the IRAM-30m telescope. The first digit in the source name indicates the column density bin to which it belongs (10 denotes the highest column density bin). The H2 column densities are derived from the data of Zari et al. (2016A&A...587A.106Z 2016A&A...587A.106Z, Cat. J/A+A/587/A106) using their recommended parameters. The line intensities are in the main beam brightness temperature scale. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 316 100 Sample positions and integrated intensities -------------------------------------------------------------------------------- See also: J/A+A/587/A106 : Perseus dust optical depth & column density maps (Zari+, 2016) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Source name 12- 13 I2 h RAh Right ascension (J2000) 15- 16 I2 min RAm Right ascension (J2000) 18- 21 F4.1 s RAs Right ascension (J2000) 23 A1 --- DE- Declination sign (J2000) 24- 25 I2 deg DEd Declination (J2000) 27- 28 I2 arcmin DEm Declination (J2000) 30- 31 I2 arcsec DEs Declination (J2000) 34- 41 E8.2 cm-2 NH2 H2 column density 44- 50 E7.1 cm-2 e_NH2 H2 column density uncertainty 53- 60 E8.2 K.km/s Int1 12CO(1-0) intensity 63- 69 E7.1 K.km/s e_Int1 12CO(1-0) intensity uncertainty 72- 79 E8.2 K.km/s Int2 13CO(1-0) intensity 82- 88 E7.1 K.km/s e_Int2 13CO(1-0) intensity uncertainty 90- 98 E9.2 K.km/s Int3 C18O(1-0) intensity 101-107 E7.1 K.km/s e_Int3 C18O(1-0) intensity uncertainty 109-117 E9.2 K.km/s Int4 C17O(1-0) intensity 120-126 E7.1 K.km/s e_Int4 C17O(1-0) intensity uncertainty 128-136 E9.2 K.km/s Int5 HCN(1-0) intensity (1) 139-145 E7.1 K.km/s e_Int5 HCN(1-0) intensity uncertainty (1) 148-155 E8.2 K.km/s Int6 CS(2-1) intensity 158-164 E7.1 K.km/s e_Int6 CS(2-1) intensity uncertainty 166-174 E9.2 K.km/s Int7 HNC(1-0) intensity 177-183 E7.1 K.km/s e_Int7 HNC(1-0) intensity uncertainty 186-193 E8.2 K.km/s Int8 HCO+(1-0) intensity 196-202 E7.1 K.km/s e_Int8 HCO+(1-0) intensity uncertainty 204-212 E9.2 K.km/s Int9 SO(23-12) intensity 215-221 E7.1 K.km/s e_Int9 SO(23-12) intensity uncertainty 223-231 E9.2 K.km/s Int10 CH3OH(2-1) intensity (2) 234-240 E7.1 K.km/s e_Int10 CH3OH(2-1) intensity uncertainty (2) 242-250 E9.2 K.km/s Int11 CN(1-0) intensity (1) 253-259 E7.1 K.km/s e_Int11 CN(1-0) intensity uncertainty (1) 261-269 E9.2 K.km/s Int12 C3H2(212-101) intensity 272-278 E7.1 K.km/s e_Int12 C3H2(212-101) intensity uncertainty 280-288 E9.2 K.km/s Int13 N2H+(1-0) intensity (1) 291-297 E7.1 K.km/s e_Int13 N2H+(1-0) intensity uncertainty (1) 299-307 E9.2 K.km/s Int14 C2H(1-0) intensity (1) 310-316 E7.1 K.km/s e_Int14 C2H(1-0) intensity uncertainty (1) -------------------------------------------------------------------------------- Note (1): For HCN(1-0), CN(1-0), N2H+(1-0), and C2H(1-0), the intensity includes the contribution from all detected hyperfine components. Note (2): For CH3OH(2-1), the intensity includes the contribution from the A+ and E components. -------------------------------------------------------------------------------- Acknowledgements: Mario Tafalla, m.tafalla(at)oan.es
(End) Patricia Vannier [CDS] 04-Jan-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line