J/A+A/644/A68 Abundance signature of M dwarf stars (Maldonado+, 2020)
HADES RV Programme with HARPS-N at TNG.
XII. The abundance signature of M dwarf stars with planets.
Maldonado J., Micela G., Baratella M., D'Orazi V., Affer L., Biazzo K.,
Lanza A.F., Maggio A., Gonzalez Hernandez J.I., Perger M., Pinamonti M.,
Scandariato G., Sozzetti A., Locci D., Di Maio C., Bignamini A., Claudi R.,
Molinari E., Rebolo R., Ribas I., Toledo-Padron B., Covino E., Desidera S.,
Herrero E., Morales J.C., Suarez-Mascareno A., Pagano I., Petralia A.,
Piotto G., Poretti E.
<Astron. Astrophys. 644, A68 (2020)>
=2020A&A...644A..68M 2020A&A...644A..68M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, late-type ; Stars, M-type ; Exoplanets ;
Abundances, [Fe/H] ; Spectroscopy ; Radial velocities
Keywords: techniques: spectroscopic - stars: abundances - stars: late-type -
planetary systems
Abstract:
Most of our current knowledge on planet formation is still based on
the analysis of main-sequence, solar-type stars. Conversely, detailed
chemical studies of large samples of M-dwarf planet hosts are still
missing. We aim to test whether the correlations between the
metallicity, individual chemical abundances, and mass of the star and
the presence of different type of planets found for FGK stars still
holds for the less massive M dwarf stars. Methods to determine in a
consistent way stellar abundances of M dwarfs from high-resolution
optical spectra are still missing. The present work is a first attempt
to fill this gap.
We analyse in a coherent and homogeneous way a large sample of M
dwarfs with and without known planetary companions. We develop for the
first time a methodology to determine stellar abundances of elements
others than iron for M dwarf stars from high-resolution, optical
spectra. Our methodology is based on the use of principal component
analysis and sparse Bayesian's methods. We made use of a set of M
dwarfs orbiting around an FGK primary with known abundances to train
our methods. We applied our methods to derive stellar metallicities
and abundances of a large sample of M dwarfs observed within the
framework of current radial velocity surveys. We then used a sample of
nearby FGK stars to cross-validate our technique by comparing the
derived abundance trends in the M dwarf sample with those found on the
FGK stars.
The metallicity distribution of the different subsamples shows that M
dwarfs hosting giant planets show a planet-metallicity correlation as
well as a correlation with the stellar mass. M dwarfs hosting low-mass
planets do not seem to follow the planet-metallicity correlation. We
also found that the frequency of low-mass planets does not depend on
the mass of the stellar host. These results seem in agreement with
previous works. However, we note that for giant planet hosts our
metallicities predict a weaker planet metallicity correlation but a
stronger mass-dependency than photometric values. We show, for the
first time, that there seems to be no differences in the abundance
distribution of elements different from iron between M dwarfs with and
without known planets.
Our data shows that low-mass stars with planets follow the same
metallicity, mass, and abundance trends than their FGK counterparts,
which are usually explained within the framework of core-accretion
models.
Description:
File tableA.1.dat lists the basic properties of the full sample of
stars covered in this work.
File tableA.2.dat gives the kinematic properties of the stars.
File tableA.3.dat shows the planet hosts, number of planets, and
planetary properties taken from the NASA exoplanets archive.
File tableA.4.dat gives the derived abundances for our sample of M
dwarfs.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 102 204 Basic properties of the sample of stars
analysed in this work
tablea2.dat 136 204 Kinematic properties of the sample
tablea3.dat 65 65 Planet host stars in the sample, along with
the planetary properties
tablea4.dat 113 204 Derived abundances, [X/H], for the M stars
analysed in this work
--------------------------------------------------------------------------------
See also:
J/A+A/593/A117 : GJ 3998 RVs, S and Halpha indexes (Affer+, 2016)
J/A+A/598/A26 : HADES RV Programme with HARPS-N at TNG. II. (Perger+, 2017)
J/A+A/605/A92 : GJ 625 HARPS-N data (Suarez Mascareno+, 2017)
J/A+A/608/A63 : HADES VI. GJ 3942b activity with HARPS-N (Perger+, 2017)
J/A+A/622/A193 : Gl686 RV curves and BVR photometry (Affer+, 2019)
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 23 A23 --- Star Star identifier
25- 28 I4 K Teff Effective temperature
30- 31 I2 K e_Teff Uncertainty on effective temperature
33- 36 A4 --- SpType Spectral Type
38- 42 F5.2 [-] [Fe/H] ? Metallicity
44- 47 F4.2 [-] e_[Fe/H] ? Uncertainty on metallicity
49- 52 F4.2 Msun Mass Stellar mass
54- 57 F4.2 Msun e_Mass Uncertainty on stellar mass
59- 62 F4.2 Rsun Rad Stellar radius
64- 67 F4.2 Rsun e_Rad Uncertainty on stellar radius
69- 72 F4.2 [cm/s+2] logg Surface gravity
74- 77 F4.2 [cm/s+2] e_logg Uncertainty on surface gravity
79- 84 F6.3 [Lsun] logL* Stellar luminosity
86- 90 F5.3 [Lsun] e_logL* Uncertainty on luminosity
92- 95 F4.2 Gyr Age ? Stellar age
97-100 F4.2 Gyr e_Age ? Uncertainty on stellar age
102 A1 --- Notes [a] Notes (1)
--------------------------------------------------------------------------------
Note (1): a: evolutionary parameters computed from photometry
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 23 A23 --- Star Star identifier
25- 32 F8.4 mas Plx ? Parallax
34- 40 F7.4 mas e_Plx ? Uncertainty on parallax
42- 50 F9.3 mas/yr pmRA Proper motion in right ascension, pmRA*cosDE
52- 57 F6.3 mas/yr e_pmRA Uncertainty on proper motion in RA
59- 67 F9.3 mas/yr pmDE Proper motion in declination
69- 74 F6.3 mas/yr e_pmDE Uncertainty in proper motion in DE
76- 82 F7.2 km/s RV ? Radial velocity
84- 91 F8.4 km/s e_RV ? Uncertainty on radial velocity
93- 99 F7.2 km/s U ? Galactic spatial velocity component U
101-105 F5.2 km/s e_U ? Uncertainty on U
107-113 F7.2 km/s V ? Galactic spatial velocity component V
115-119 F5.2 km/s e_V ? Uncertainty on V
121-127 F7.2 km/s W ? Galactic spatial velocity component W
129-133 F5.2 km/s e_W ? Uncertainty on W
135-136 A2 --- D/TD ? Thin/Thick disk classification (1)
--------------------------------------------------------------------------------
Note (1): Thin / thick disk classification as follows:
D = thin disk
TD = thick disk
TR = transition
H = halo
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Star Star identifier
11 A1 --- Planet Planet
13- 25 F13.8 d Per ? Planetary period (1)
27- 36 F10.8 au a ? Planetary semi-major axis (1)
38 A1 --- l_e Limit flag on e
39- 45 F7.5 --- e ? Planetary eccentricity (1)
47- 55 F9.4 Mgeo msini Planetary minimum mass (1)
57- 65 A9 --- Notes Notes on msini
--------------------------------------------------------------------------------
Note (1): Data taken from the NASA exoplanets archive, http://exoplanets.org/
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 23 A23 --- Star Star identifier
25- 29 F5.2 [-] [Fe/H] Abundance [Fe/H]
31- 35 F5.2 [-] [C/H] Abundance [C/H]
37- 41 F5.2 [-] [Na/H] Abundance [Na/H]
43- 47 F5.2 [-] [Mg/H] Abundance [Mg/H]
49- 53 F5.2 [-] [Al/H] Abundance [Al/H]
55- 59 F5.2 [-] [Si/H] Abundance [Si/H]
61- 65 F5.2 [-] [Ca/H] Abundance [Ca/H]
67- 71 F5.2 [-] [Sc/H] Abundance [Sc/H]
73- 77 F5.2 [-] [Ti/H] Abundance [Ti/H]
79- 83 F5.2 [-] [V/H] Abundance [V/H]
85- 89 F5.2 [-] [Cr/H] Abundance [Cr/H]
91- 95 F5.2 [-] [Mn/H] Abundance [Mn/H]
97-101 F5.2 [-] [Co/H] Abundance [Co/H]
103-107 F5.2 [-] [Ni/H] Abundance [Ni/H]
109-113 F5.2 [-] [Zn/H] Abundance [Zn/H]
--------------------------------------------------------------------------------
Acknowledgements:
Jesus Maldonado, jesus.maldonado(at)inaf.it
References:
Affer et al., Paper I 2016A&A...593A.117A 2016A&A...593A.117A, Cat. J/A+A/593/A117
Perger et al., Paper II 2017A&A...598A..26P 2017A&A...598A..26P, Cat. J/A+A/598/A26
Maldonado et al. Paper III 2017A&A...598A..27M 2017A&A...598A..27M
Scandariato et al., Paper IV 2017A&A...598A..28S 2017A&A...598A..28S
Suarez Mascareno et al., Paper V 2017A&A...605A..92S 2017A&A...605A..92S, Cat. J/A+A/605/A92
Perger et al., Paper VI 2017A&A...608A..63P 2017A&A...608A..63P, Cat. J/A+A/608/A63
Mascareno et al., Paper VII 2018A&A...612A..89M 2018A&A...612A..89M
Pinamonti et al., Paper VIII 2018A&A...617A.104P 2018A&A...617A.104P
Affer et al., Paper IX 2019A&A...622A.193A 2019A&A...622A.193A, Cat. J/A+A/622/A193
Gonzalez-Alvarez et al., Paper X 2019A&A...624A..27G 2019A&A...624A..27G
Pinamonti et al., Paper XI 2019A&A...625A.126P 2019A&A...625A.126P
(End) Jesus Maldonado [INAF-OAPa, Italy], Patricia Vannier [CDS] 30-Oct-2020