J/A+A/644/A123      Rotational spectroscopy of CH2OH         (Chitarra+, 2020)

Reinvestigation of the rotation-tunneling spectrum of the CH2OH radical. Accurate frequency determination of transitions of astrophysical interest up to 330 GHz. Chitarra O., Martin-Drumel M-A., Gans B., Loison J-C., Spezzano S., Lattanzi V., Mueller H.S.P., Pirali O. <Astron. Astrophys. 644, A123 (2020)> =2020A&A...644A.123C 2020A&A...644A.123C (SIMBAD/NED BibCode)
ADC_Keywords: Interstellar medium ; Molecular clouds ; Radio lines ; Spectroscopy Keywords: methods, laboratory, molecular - techniques, spectroscopic - catalogs - ISM: molecules - submillimeter: general Abstract: The hydroxymethyl radical (CH2OH) is one of the two structural isomers, together with the methoxy radical (CH3O), that can be produced by abstraction of a hydrogen atom from methanol (CH3OH). In the interstellar medium (ISM), both CH2OH and CH3O are suspected to be intermediate species in many chemical reactions, including those of formation and destruction of methanol. The determination of the CH3O/CH2OH ratio in the ISM would bring important information concerning the formation processes of these species in the gas and solid phases. Interestingly, only CH3O has been detected in the ISM so far, despite the recent first laboratory measurement of the CH2OH rotation-tunneling spectrum. This lack of detection is possibly due to the non-observation in the laboratory of the most intense rotational-tunneling transitions at low temperature. To support further searches for the hydroxymethyl radical in space, we have performed a thorough spectroscopic study of its rotation-tunneling spectrum, with particular focus on transitions involving the lowest quantum numbers of the species. We have recorded the rotation-tunneling spectrum of CH2OH at room temperature in the millimeter-wave domain using a frequency multiplication chain spectrometer associated to a fluorine-induced H-abstraction method. The radical was produced from methanol precursor. About 180 transitions were observed including those involving the lowest N and Ka quantum numbers, predicted intense under cold astrophysical conditions. These transitions were fitted together with available millimeter-wave lines from the literature. The systematic observation of all components of the rotational transitions yields a large improvement of the spectroscopic parameters which now allow confident searches of the hydroxymethyl radical in cold to warm environments of the ISM. Description: All files used for the initial and final fits of the submillimeter-wave data for CH2OH and with SPFIT and SPCAT. Detailled explanations on SPFIT/ SPACT could be found at https://www.astro.uni-koeln.de/cdms/pickett File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file ch2ohini.cat 87 6140 Initial prediction up to 1000GHz ch2ohini.bak 80 38 Initial .bak file, input file for SFIPT ch2ohini.fit 147 307 Initial .fit file, input file for SFIPT ch2ohini.int 63 4 Initial .int file, input file for SFIPT ch2ohini.lin 97 88 Initial .lin file, input file for SFIPT ch2ohini.par 80 38 Initial .par file, input file for SFIPT ch2ohini.var 80 76 Initial .var file, input file for SFIPT ch2oh.cat 87 4871 New prediction up to 1000GHz ch2oh.bak 80 43 New .bak file, input file for SFIPT ch2oh.fit 147 524 New .fit file, input file for SFIPT ch2oh.int 61 4 New .int file, input file for SFIPT ch2oh.lin 104 278 New .lin file, input file for SFIPT ch2oh.par 80 43 New .par file, input file for SFIPT ch2oh.var 80 91 New .var file, input file for SFIPT -------------------------------------------------------------------------------- Byte-by-byte Description of file: ch2oh.cat ch2ohini.cat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 3- 13 F11.4 MHz Freq Frequency of the line 14- 21 F8.4 MHz e_Freq Estimated or experimental error 23- 29 F7.4 [nm2.MHz] logInt Base 10 logarithm of the integrated intensity in units of nm2.MHz 31 I1 --- DOF Degrees of freedom in the rotational partition function 33- 41 F9.4 --- ELow Lower state energy in wavenumbers 43- 44 I2 --- gup Upper state degeneracy 47- 55 I9 --- Tag Species tag or molecular identifier 56- 57 I2 --- N" Upper N quantum number 59 I1 --- Ka" Upper Ka quantum number 60- 61 I2 --- Kc" Upper Kc quantum number 63 I1 --- v" Upper v quantum number 64- 65 I2 --- J" Upper J quantum number 66- 67 I2 --- F1" Upper F1 quantum number 69 I1 --- IH" Upper IH quantum number 70- 71 I2 --- F" Upper F quantum number 72- 73 I2 --- N' Lower N quantum number 75 I1 --- Ka' Lower Ka quantum number 76- 77 I2 --- Kc' Lower Kc quantum number 79 I1 --- v' Lower v quantum number 80- 81 I2 --- J' Lower J quantum number 82- 83 I2 --- F1' Lower F1 quantum number 85 I1 --- IH' Lower IH quantum number 86- 87 I2 --- F' Lower F quantum number -------------------------------------------------------------------------------- Description of file: File ch2oh_ini.lin (initial measured transition): ------------------------------------------------------------------------------ Bytes Format Units Label Explanations ------------------------------------------------------------------------------ 2- 4 I2 --- N" Upper N quantum number 6 I1 --- Ka" Upper Ka quantum number 8- 10 I2 --- Kc" Upper Kc quantum number 12 I1 --- v" Upper v quantum number 14- 16 I2 --- J" Upper J quantum number 17- 19 I2 --- F1" Upper F1 quantum number 21 I1 --- I"H Upper IH quantum number 23- 25 I2 --- F" Upper F quantum number 26- 28 I2 --- N' Lower N quantum number 30 I1 --- Ka' Lower Ka quantum number 32- 34 I2 --- Kc' Lower Kc quantum number 36 I1 --- v' Lower v quantum number 38- 40 I2 --- J' Lower J quantum number 41- 43 I2 --- F1' Lower F1 quantum number 45 I1 --- IH' Lower IH quantum number 47- 49 I2 --- F' Lower F quantum number 51- 61 F13.6 MHz Freq Observed transition frequency 63- 67 F7.5 MHz unc Uncertainty of measurements (1) 69- 73 F6.3 --- WT relative weight when 2 lines are assigned to one frequency (1) 70- 92 A11 --- LABEL Transition label delimited by / when no relative weight 76- 98 A11 --- LABEL Transition label delimited by / when relative weight is given ------------------------------------------------------------------------------ Note (1): When two different transitions are assigned to the same frequency, a relative weight is given for each component. ------------------------------------------------------------------------------ File ch2oh.lin (final measured transition): ------------------------------------------------------------------------------ Bytes Format Units Label Explanations ------------------------------------------------------------------------------ 2- 4 I2 --- N" Upper N quantum number 6 I1 --- Ka" Upper Ka quantum number 8- 10 I2 --- Kc" Upper Kc quantum number 12 I1 --- v" Upper v quantum number 14- 16 I2 --- J" Upper J quantum number 17- 19 I2 --- F1" Upper F1 quantum number 21 I1 --- IH" Upper IH quantum number 23- 25 I2 --- F" Upper F quantum number 26- 28 I2 --- N' Lower N quantum number 30 I1 --- Ka' Lower Ka quantum number 32- 34 I2 --- Kc' Lower Kc quantum number 36 I1 --- v' Lower v quantum number 38- 40 I2 --- J' Lower J quantum number 41- 43 I2 --- F1' Lower F1 quantum number 45 I1 --- IH' Lower IH quantum number 47- 49 I2 --- F' Lower F quantum number 53- 63 F13.6 MHz Freq Observed transition frequency 70- 74 F7.5 MHz unc Uncertainty of measurements (1) 75- 80 F6.3 --- WT relative weight when 2 lines are assigned to one frequency (1) 77- 90 A11 --- LABEL Transition label delimited by / when no relative weight (2) 81- 94 A11 --- LABEL Transition label delimited by / when relative weight is given (2) ------------------------------------------------------------------------------ Note (1): When two different transitions are assigned to the same frequency, a relative weight is given for each component. Note (2): Transitions used from a previous work are indicated by /Bermudez2017 ------------------------------------------------------------------------------ File ch2oh_ini.par, ch2oh_par (spectroscopic parameters): First 3 lines for SFIPT use (see https://www.astro.uni-koeln.de/cdms/pickett) For lines 4 to 38: ------------------------------------------------------------------------------ Bytes Format Units Label Explanations ------------------------------------------------------------------------------ 4- 14 I10 --- IDPAR coding of the parameter 15- 38 E22.15 --- PAR parameter value 39- 54 E14.8 --- ERPAR parameter uncertainty 55- 65 A11 --- LABEL parameter label that is delimited by / ------------------------------------------------------------------------------ Acknowledgements: Olivia Chitarra , olivia.chitarra(at)universite-paris-saclay.fr References: Bermudez et al., 2017A&A...598A...9B 2017A&A...598A...9B, Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH
(End) Patricia Vannier [CDS] 12-Nov-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line