J/A+A/643/A113 iz photometry of S190814bv ctp candidates (Ackley+, 2020)
Observational constraints on the optical and near-infrared emission from the
neutron star-black hole binary merger candidate S190814bv.
Ackley K., Amati L., Barbieri C., Bauer F.E., Benetti S., Bernardini M.G.,
Bhirombhakdi K., M.T., Botticella , Branchesi M., Brocato E., Bruun S.H.,
Bulla M., Campana S., Cappellaro E., Castro-Tirado A.J., Chambers K.C.,
Chaty S., Chen T.-W., Ciolfi R., Coleiro A., Copperwheat C.M., Covino S.,
Cutter R., D'Ammando F., D'Avanzo P., De Cesare G., D'Elia V.,
Della Valle M., Denneau L., De Pasquale M., Dhillon V.S., Dyer M.J.,
Elias-Rosa N., Evans P.A., Eyles-Ferris R.A.J., Fiore A., Fraser M.,
Fruchter A.S., Fynbo J.P.U., Galbany L., Gall C., Galloway D.K.,
Getman F.I., Ghirlanda G., Gillanders J.H., Gomboc A., Gompertz B.P.,
Gonzalez-Fernandez C., Gonzalez-Gaitan S., Grado A., Greco G., Gromadzki M.,
Groot P.J., Gutierrez C.P., Heikkilae T., Heintz K.E., Hjorth J., Hu Y.-D.,
Huber M.E., Inserra C., Izzo L., Japelj J., Jerkstrand A., Jin Z.P.,
Jonker P.G., Kankare E., Kann D.A., Kennedy M., Kim S., Klose S., Kool E.C.,
Kotak R., Kuncarayakti H., Lamb G.P., Leloudas G., Levan A.J., Longo F.,
Lowe T.B., Lyman J.D., Magnier E., Maguire K., Maiorano E., Mandel I.,
Mapelli M., Mattila S., McBrien O.R., Melandri A., Michalowski M.J.,
Milvang-Jensen B., Moran S., Nicastro L., Nicholl M., Nicuesa Guelbenzu A.,
Nuttal L., Oates S.R., O'Brien P.T., Onori F., Palazzi E., Patricelli B.,
Perego A., Torres M.A.P., Perley D.A., Pian E., Pignata G., Piranomonte S.,
Poshyachinda S., Possenti A., Pumo M.L., Quirola-Vasquez J., Ragosta F.,
Ramsay G., Rau A., Rest A., Reynolds T.M., Rosetti S.S., Rossi A.,
Rosswog S., Sabha N.B., Sagues Carracedo A., Salafia O.S., Salmon L.,
Salvaterra R., Savaglio S., Sbordone L., Schady P., Schipani P.,
Schultz A.S.B., Schweyer T., Smartt S.J., Smith K.W., Smith M.,
Sollerman J., Srivastav S., Stanway E.R., Starling R.L.C., Steeghs D.,
Stratta G., Stubbs C.W., Tanvir N.R., Testa V., Thrane E., Tonry J.L.,
Turatto M., Ulaczyk K., van der Horst A.J., Vergani S.D., Walton N.A.,
Watson D., Wiersema K., Wiik K., Wyrzykowski L., Yang S., Yi S.-X.,
Young D.R.
<Astron. Astrophys. 643, A113 (2020)>
=2020A&A...643A.113A 2020A&A...643A.113A (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, photometry ; Optical
Keywords: gravitational waves - stars: neutron - supernovae: general
Abstract:
Gravitational wave (GW) astronomy has rapidly reached maturity,
becoming a fundamental observing window for modern astrophysics. The
coalescences of a few tens of black hole (BH) binaries have been
detected, while the number of events possibly including a neutron star
(NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo
interferometers detected a high-significance event labelled S190814bv.
A preliminary analysis of the GW data suggests that the event was
likely due to the merger of a compact binary system formed by a BH and
a NS.
In this paper, we present our extensive search campaign aimed at
uncovering the potential optical and near infrared electromagnetic
counterpart of S190814bv. We found no convincing electromagnetic
counterpart in our data. We therefore use our non-detection to place
limits on the properties of the putative outflows that could have been
produced by the binary during and after the merger.
Thanks to the three-detector observation of S190814bv, and given the
characteristics of the signal, the LIGO and Virgo Collaborations
delivered a relatively narrow localisation in low latency - a 50%
(90%) credible area of 5 deg2 (23 deg2) - despite the relatively
large distance of 267 52 Mpc. ElectromagNetic counterparts of
GRAvitational wave sources at the VEry Large Telescope (ENGRAVE)
collaboration members carried out an intensive multi-epoch,
multi-instrument observational campaign to identify the possible
optical and near infrared counterpart of the event. In addition, the
ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also
carried out a search on this event. In this paper, we describe the
combined observational campaign of these groups.
Our observations allow us to place limits on the presence of any
counterpart and discuss the implications for the kilonova (KN), which
was possibly generated by this NS-BH merger, and for the strategy of
future searches. The typical depth of our wide-field observations,
which cover most of the projected sky localisation probability (up to
99.8%, depending on the night and filter considered), is r 22 (resp. K
21) in the optical (resp. near infrared). We reach deeper limits in a
subset of our galaxy-targeted observations, which cover a total 50% of
the galaxy-mass-weighted localisation probability. Altogether, our
observations allow us to exclude a KN with large ejecta mass
M≳0:1M☉ to a high (>90%) confidence, and we can exclude much
smaller masses in a sub-sample of our observations. This disfavours
the tidal disruption of the neutron star during the merger.
Despite the sensitive instruments involved in the campaign, given the
distance of S190814bv, we could not reach sufficiently deep limits to
constrain a KN comparable in luminosity to AT 2017gfo on a large
fraction of the localisation probability. This suggests that future
(likely common) events at a few hundred megaparsecs will be detected
only by large facilities with both a high sensitivity and large field
of view. Galaxytargeted observations can reach the needed depth over a
relevant portion of the localisation probability with a smaller
investment of resources, but the number of galaxies to be targeted in
order to get a fairly complete coverage is large, even in the case of
a localisation as good as that of this event.
Description:
Table of all Pan-STARRS1 photometry for objects discovered in the
search for an electromagnetic counterpart to the gravitational wave
candidate event S190814bv. Additional information on these sources can
be found in Table 3 of the paper.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
objects.dat 44 24 Object list
photps1.dat 36 101 PS1 photometry
--------------------------------------------------------------------------------
Byte-by-byte Description of file: objects.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 3 I2 h RAh Right ascension (J2000)
5- 6 I2 min RAm Right ascension (J2000)
8- 12 F5.2 s RAs Right ascension (J2000)
15 A1 --- DE- Declination sign (J2000)
16- 17 I2 deg DEd Declination (J2000)
19- 20 I2 arcmin DEm Declination (J2000)
22- 25 F4.1 arcsec DEs Declination (J2000)
28- 34 A7 --- Name PS1 name, PS10aaa
36- 44 A9 --- IAUName IAU name, AT2019aaa
--------------------------------------------------------------------------------
Byte-by-byte Description of file: photps1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- Name PS1 name, PS10aaa
9- 21 F13.7 d MJD Modified Julain date of observation
23- 27 F5.2 mag mag Apparent magnitude in Filter (AB)
29- 32 F4.2 mag e_mag One-sigma uncertainty on apparent magnitude
36 A1 --- Filter [iz] PS1 photometric filter
--------------------------------------------------------------------------------
Acknowledgements:
Om Sharan Salafia, om.salafia(at)inaf.it
(End) Om Sharan Salafia [INAF - OAB], Patricia Vannier [CDS] 30-Oct-2020