J/A+A/643/A113     iz photometry of S190814bv ctp candidates     (Ackley+, 2020)

Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Ackley K., Amati L., Barbieri C., Bauer F.E., Benetti S., Bernardini M.G., Bhirombhakdi K., M.T., Botticella , Branchesi M., Brocato E., Bruun S.H., Bulla M., Campana S., Cappellaro E., Castro-Tirado A.J., Chambers K.C., Chaty S., Chen T.-W., Ciolfi R., Coleiro A., Copperwheat C.M., Covino S., Cutter R., D'Ammando F., D'Avanzo P., De Cesare G., D'Elia V., Della Valle M., Denneau L., De Pasquale M., Dhillon V.S., Dyer M.J., Elias-Rosa N., Evans P.A., Eyles-Ferris R.A.J., Fiore A., Fraser M., Fruchter A.S., Fynbo J.P.U., Galbany L., Gall C., Galloway D.K., Getman F.I., Ghirlanda G., Gillanders J.H., Gomboc A., Gompertz B.P., Gonzalez-Fernandez C., Gonzalez-Gaitan S., Grado A., Greco G., Gromadzki M., Groot P.J., Gutierrez C.P., Heikkilae T., Heintz K.E., Hjorth J., Hu Y.-D., Huber M.E., Inserra C., Izzo L., Japelj J., Jerkstrand A., Jin Z.P., Jonker P.G., Kankare E., Kann D.A., Kennedy M., Kim S., Klose S., Kool E.C., Kotak R., Kuncarayakti H., Lamb G.P., Leloudas G., Levan A.J., Longo F., Lowe T.B., Lyman J.D., Magnier E., Maguire K., Maiorano E., Mandel I., Mapelli M., Mattila S., McBrien O.R., Melandri A., Michalowski M.J., Milvang-Jensen B., Moran S., Nicastro L., Nicholl M., Nicuesa Guelbenzu A., Nuttal L., Oates S.R., O'Brien P.T., Onori F., Palazzi E., Patricelli B., Perego A., Torres M.A.P., Perley D.A., Pian E., Pignata G., Piranomonte S., Poshyachinda S., Possenti A., Pumo M.L., Quirola-Vasquez J., Ragosta F., Ramsay G., Rau A., Rest A., Reynolds T.M., Rosetti S.S., Rossi A., Rosswog S., Sabha N.B., Sagues Carracedo A., Salafia O.S., Salmon L., Salvaterra R., Savaglio S., Sbordone L., Schady P., Schipani P., Schultz A.S.B., Schweyer T., Smartt S.J., Smith K.W., Smith M., Sollerman J., Srivastav S., Stanway E.R., Starling R.L.C., Steeghs D., Stratta G., Stubbs C.W., Tanvir N.R., Testa V., Thrane E., Tonry J.L., Turatto M., Ulaczyk K., van der Horst A.J., Vergani S.D., Walton N.A., Watson D., Wiersema K., Wiik K., Wyrzykowski L., Yang S., Yi S.-X., Young D.R. <Astron. Astrophys. 643, A113 (2020)> =2020A&A...643A.113A 2020A&A...643A.113A (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, photometry ; Optical Keywords: gravitational waves - stars: neutron - supernovae: general Abstract: Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg2 (23 deg2) - despite the relatively large distance of 267 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope (ENGRAVE) collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r 22 (resp. K 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M≳0:1M to a high (>90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxytargeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event. Description: Table of all Pan-STARRS1 photometry for objects discovered in the search for an electromagnetic counterpart to the gravitational wave candidate event S190814bv. Additional information on these sources can be found in Table 3 of the paper. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file objects.dat 44 24 Object list photps1.dat 36 101 PS1 photometry -------------------------------------------------------------------------------- Byte-by-byte Description of file: objects.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 3 I2 h RAh Right ascension (J2000) 5- 6 I2 min RAm Right ascension (J2000) 8- 12 F5.2 s RAs Right ascension (J2000) 15 A1 --- DE- Declination sign (J2000) 16- 17 I2 deg DEd Declination (J2000) 19- 20 I2 arcmin DEm Declination (J2000) 22- 25 F4.1 arcsec DEs Declination (J2000) 28- 34 A7 --- Name PS1 name, PS10aaa 36- 44 A9 --- IAUName IAU name, AT2019aaa -------------------------------------------------------------------------------- Byte-by-byte Description of file: photps1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Name PS1 name, PS10aaa 9- 21 F13.7 d MJD Modified Julain date of observation 23- 27 F5.2 mag mag Apparent magnitude in Filter (AB) 29- 32 F4.2 mag e_mag One-sigma uncertainty on apparent magnitude 36 A1 --- Filter [iz] PS1 photometric filter -------------------------------------------------------------------------------- Acknowledgements: Om Sharan Salafia, om.salafia(at)inaf.it
(End) Om Sharan Salafia [INAF - OAB], Patricia Vannier [CDS] 30-Oct-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line