J/A+A/641/A155 CO+[CI] emission in distant galaxies (Valentino+, 2020)
CO emission in distant galaxies on and above the main sequence.
Valentino F., Daddi E., Puglisi A., Magdis G. E., Liu D., Kokorev V.,
Cortzen I., Madden S., Aravena M., Gomez-Guijarro C., Lee M.-Y.,
Le Floch E., Gao Y., Gobat R., Bournaud F., Dannerbauer H., Jin S.,
Dickinson M. E., Kartaltepe J., Sanders D.
<Astron. Astrophys. 641, A155 (2020)>
=2020A&A...641A.155V 2020A&A...641A.155V (SIMBAD/NED BibCode)
ADC_Keywords: Galaxy catalogs ; Galaxies, IR ; Galaxies, spectra ;
Interferometry
Keywords: galaxies: evolution - galaxies: ISM - galaxies: starburst -
galaxies: high-redshift
Abstract:
We present the detection of multiple carbon monoxide CO line
transitions with ALMA in a few tens of infrared-selected galaxies on
and above the main sequence at z=1.1-1.7. We reliably detected the
emission of CO(5-4), CO(2-1), and CO(7-6)+[CI](2-1) in 50, 33, and 13
galaxies, respectively, and we complemented this information with
available CO(4-3) and [CI](1-0) fluxes for part of the sample, and by
modeling of the optical-to-millimeter spectral energy distribution. We
retrieve a quasi-linear relation between LIR and CO(5-4) or CO(7-6)
for main-sequence galaxies and starbursts, corroborating the
hypothesis that these transitions can be used as star formation rate
(SFR) tracers. We find the CO excitation to steadily increase as a
function of the star formation efficiency (SFE), the mean intensity of
the radiation field warming the dust (), the surface density of SFR
(SigmaSFR), and, less distinctly, with the distance from the main
sequence. This adds to the tentative evidence for higher excitation of
the CO+[CI] spectral line energy distribution (SLED) of starburst
galaxies relative to that for main-sequence objects, where the dust
opacities play a minor role in shaping the high-J CO transitions in
our sample. However, the distinction between the average SLED of upper
main-sequence and starburst galaxies is blurred, driven by a wide
variety of intrinsic shapes. Large velocity gradient radiative
transfer modeling demonstrates the existence of a highly excited
component that elevates the CO SLED of high-redshift main-sequence and
starbursting galaxies above the typical values observed in the disk of
the Milky Way. This excited component is dense and it encloses ∼50% of
the total molecular gas mass in main-sequence objects. We interpret
the observed trends involving the CO excitation as to be mainly
determined by a combination of large SFRs and compact sizes, as a
large SigmaSFR is naturally connected with enhanced dense molecular
gas fractions and higher dust and gas temperatures, due to increasing
ultraviolet radiation fields, cosmic ray rates, as well as dust and
gas coupling. We release the full data compilation and the ancillary
information to the community.
Description:
This table contains the ALMA all the lines and continuum fluxes of the
whole parent sample of 123 galaxies that we studies. It further
encloses the best-fit parameters of the far-infrared spectral energy
distribution modeling. Finally, it includes ancillary information on
the sample from the optical/near-infrared observations available in
the literature.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table.dat 1146 123 *ALMA+Far-IR+Optical data table
--------------------------------------------------------------------------------
Note on table.dat: The aperture corrections have been already applied to the
corresponding line and continuum fluxes reported in the table.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- ID Identifier (ID)
7- 8 I2 h RAh Right ascension (J2000) (RAh)
10- 11 I2 min RAm Right ascension (J2000) (RAm)
13- 18 F6.3 s RAs Right ascension (J2000) (RAs)
19 A1 --- DE- Declination sign (J2000) (DE-)
20- 21 I2 deg DEd Declination (J2000) (DEd)
23- 24 I2 arcmin DEm Declination (J2000) (DEm)
26- 30 F5.2 arcsec DEs Declination (J2000) (DEs)
32- 37 F6.4 --- zspOptMIR Optical/near-IR redshift
(ZSPEC_OPTICALNIR) (1)
39- 58 F20.16 --- zspsubmm ALMA submillimeter redshift
(ZSPEC_SUBMM)
60- 79 E20.15 --- e_zspsubmm ?=-99 Error on the ALMA redshift
(DZSPEC_SUBMM)
81- 91 F11.7 [Msun] logM* ?=-99 logarithm of stellar mass
(LOG_STELLARMASS) (2)
93- 113 E21.16 Lsun LLIRtot ?=-99 Total 8-1000um IR luminosity
(TOTAL_LIR) (3)
115- 135 E21.16 Lsun e_LLIRtot ?=-99 Error on the total IR luminosity
(DTOTAL_LIR)
137- 157 E21.16 Lsun SFLIR ?=-99 IR luminosity due to star
formation (SF_LIR)
159- 179 E21.16 Lsun e_SFLIR ?=-99 Error on IR luminosity due to
star formation (DSF_LIR)
181- 201 E21.16 Lsun AGNLIR ?=-99 IR luminosity from the AGN
component (AGN_LIR)
203- 223 E21.16 Lsun e_AGNLIR ?=-99 Error on IR luminosity from the
AGN component (DAGN_LIR)
225- 245 E21.19 --- fAGN ?=-99 Fraction of total LIR due to the
AGN (F_AGN)
247- 267 E21.19 --- e_fAGN ?=-99 Error on the fraction of total
LIR due to the AGN (DF_AGN)
269- 288 E20.16 Msun Mdust ?=-99 Dust mass (MDUST) (4)
290- 309 E20.16 Msun e_Mdust ?=-99 Error on the dust mass (DMDUST)
311- 330 F20.16 --- U ?=-99 Mean intensity of the
interstellar radiation field (U) (4)
332- 352 F21.17 --- e_U ?=-99 Error on U (DU)
354- 366 F13.9 --- DistMS ?=-99 Distance from the main sequence
(DISTANCEMS) (5)
368- 381 F14.10 arcsec Size ?=-99 Source angular size from ALMA
(SIZE)
383- 398 F16.12 arcsec e_Size ?=-99 Error on the source angular size
from ALMA (DSIZE)
400- 413 F14.10 arcsec 1sigsize ?=-99 1σ upper limit on the size
(ONESIGMA_SIZE)
415- 428 E14.12 --- Punres Probability of being unresolved
(PROBABILITY_UNRESOLVED) (6)
430- 450 F21.17 Jy.km/s FCO54 ?=-99 Velocity integrated CO54 flux
(FLUX_LINECO54)
452- 462 F11.7 --- SNRCO54 ?=-99 S/N of the CO54 line flux
(SNR_CO54)
464- 484 F21.17 Jy.km/s 1sigCO54 ?=-99 1σ limit on CO54 flux
(ONESIGMA_CO54)
486- 503 F18.14 km/s WidthCO54 ?=-99 Velocity width of CO54 line
(WIDTH_CO54)
505- 515 F11.7 --- apcorCO54 ?=-99 Applied aperture correction for
CO54 (*APERTURECORR_CO54)
517- 529 F13.9 --- e_apcorCO54 ?=-99 Error on aperture correction for
CO54 (DAPERTURECORR_CO54)
531- 544 E14.12 --- PlineCO54 ?=-99 Probability of spurious detection
of CO54 (PROB_LINECO54)
546- 550 F5.1 --- fCO54 ?=-99 Quality and usage flag for CO54
(FLAG_CO54)
552- 572 F21.17 Jy.km/s FCO21 ?=-99 Velocity integrated CO21 flux
(FLUX_LINECO21)
574- 584 F11.7 --- SNRCO21 ?=-99 S/N of the CO21 line flux
(SNR_CO21)
586- 606 F21.17 Jy.km/s 1sigCO21 ?=-99 1σ limit on CO21 flux
(ONESIGMA_CO21)
608- 625 F18.14 km/s WidthCO21 ?=-99 Velocity width of CO21 line
(WIDTH_CO21)
627- 637 F11.7 --- apcorCO21 ?=-99 Applied aperture correction for
CO21 (*APERTURECORR_CO21)
639- 651 F13.9 --- e_apcorCO21 ?=-99 Aperture correction for CO21
(DAPERTURECORR_CO21)
653- 666 E14.12 --- PlineCO21 ?=-99 Probability of spurious detection
of CO21 (PROB_LINECO21)
668- 672 F5.1 --- fCO21 ?=-99 Quality and usage flag for CO21
(FLAG_CO21)
674- 694 F21.17 Jy.km/s FCO76 ?=-99 Velocity integrated CO76 flux
(FLUX_LINECO76)
696- 714 F19.15 --- SNRCO76 ?=-99 S/N of the CO76 line flux
(SNR_CO76)
716- 720 F5.1 Jy.km/s 1sigCO76 ?=-99 1σ limit on CO76 flux
(ONESIGMA_CO76)
722- 739 F18.14 km/s WidthCO76 ?=-99 Velocity width of CO76 line
(WIDTH_CO76)
741- 745 F5.1 --- apcorCO76 ?=-99 Applied aperture correction for
CO76 (*APERTURECORR_CO76)
747- 751 F5.1 --- e_apcorCO76 ?=-99 Error on aperture correction for
CO76 (DAPERTURECORR_CO76)
753- 757 F5.1 --- PlineCO76 ?=-99 Probability of spurious detection
of CO76 (PROB_LINECO76)
759- 763 F5.1 --- fCO76 ?=-99 Quality and usage flag for CO76
(FLAG_CO76)
765- 784 F20.16 Jy.km/s FCI21 ?=-99 Velocity integrated CI21 flux
(FLUX_LINECI21)
786- 804 F19.15 --- SNRCI21 ?=-99 S/N of the CI21 line flux
(SNR_CI21)
806- 810 F5.1 Jy.km/s 1sigCI21 ?=-99 1σ limit on CI21 flux
(ONESIGMA_CI21)
812- 829 F18.14 km/s WIDTHCI21 ?=-99 Velocity width of CI21 line
(WIDTHCI21)
831- 835 F5.1 --- apcorCI21 ?=-99 Applied aperture correction for
CI21 (*APERTURECORR_CI21)
837- 841 F5.1 --- e_apcorCI21 ?=-99 Error on aperture correction for
CI21 (DAPERTURECORR_CI21)
843- 847 F5.1 --- PlineCI21 ?=-99 Probability of spurious detection
of CI21 (PROB_LINECI21)
849- 853 F5.1 --- fCI21 ?=-99 Quality and usage flag for CI21
(FLAG_CI21)
855- 864 F10.6 Jy.km/s FCI10 ?=-99 Velocity integrated CI10 flux
(FLUX_LINECI10)
866- 874 F9.5 --- SNRCI10 ?=-99 S/N of the CI10 line flux
(SNR_CI10)
876- 886 F11.7 Jy.km/s 1sigCI10 ?=-99 1σ limit on CI10 flux
(ONESIGMA_CI10)
888- 894 F7.3 km/s WidthCI10 ?=-99 Velocity width of CI10 line
(WIDTH_CI10)
896- 904 F9.5 --- apcorCI10 ?=-99 Applied aperture correction for
CI10 (*APERTURECORR_CI10)
906- 915 F10.6 --- e_apcorCI10 ?=-99 Error on aperture correction
for CI10 (DAPERTURECORR_CI10)
917- 921 F5.1 --- PlineCI10 ?=-99 Probability of spurious detection
of CI10 (PROB_LINECI10)
923- 927 F5.1 --- fCI10 ?=-99 Quality and usage flag for CI10
(FLAG_CI10)
929- 938 F10.6 Jy.km/s FCO43 ?=-99 Velocity integrated CO43 flux
(FLUX_LINECO43)
940- 948 F9.5 --- SNRCO43 ?=-99 S/N of the CO43 line flux
(SNR_CO43)
950- 954 F5.1 Jy.km/s 1sigCO43 ?=-99 1σ limit on CO43 flux
(ONESIGMA_CO43)
956- 962 F7.3 km/s WidthCO43 ?=-99 Velocity width of CO43 line
(WIDTH_CO43)
964- 972 F9.5 --- apcorCO43 ?=-99 Applied aperture correction for
CO43 (*APERTURECORR_CO43)
974- 983 F10.6 --- e_apcorCO43 ?=-99 Error on aperture correction for
CO43 (DAPERTURECORR_CO43)
985- 989 F5.1 --- PlineCO43 ?=-99 Probability of spurious detection
of CO43 (PROB_LINECO43)
991- 995 F5.1 --- fCO43 ?=-99 Quality and usage flag for CO43
(FLAG_CO43)
997-1007 F11.7 GHz FreqContCO54 ?=-99 Frequency under CO54
(FREQCONTINUUMBAND6_CO54)
1009-1022 F14.10 mJy ContCO54 ?=-99 Continuum under CO54
(CONTINUUMBAND6_CO54)
1024-1038 F15.11 mJy e_ContCO54 ?=-99 Error on continuum under CO54
(DCONTINUUMBAND6_CO54)
1040-1049 F10.6 GHz FreqContCO21 ?=-99 Frequency under CO21
(FREQCONTINUUMBAND3_CO21)
1051-1064 F14.10 mJy ContCO21 ?=-99 Continuum under CO21
(CONTINUUMBAND3_CO21)
1066-1078 F13.9 mJy e_ContCO21 ?=-99 Error on continuum under CO21
(DCONTINUUMBAND3_CO21)
1080-1086 F7.3 GHz FreqContCI10 ?=-99 Frequency under CI10
(FREQCONTINUUMBAND6_CI10)
1088-1097 F10.6 mJy ContCI10 ?=-99 Continuum under CI10
(CONTINUUMBAND6_CI10)
1099-1109 F11.7 mJy e_ContCI10 ?=-99 Error on continuum under CI10
(DCONTINUUMBAND6_CI10)
1111-1119 F9.5 GHz FreqContCI21 ?=-99 Frequency under CI21
(FREQCONTINUUMBAND7_CI21)
1121-1132 F12.8 mJy ContCI21 ?=-99 Continuum under CI21
(CONTINUUMBAND7_CI21)
1134-1146 F13.9 mJy e_ContCI21 ?=-99 Error on continuum under CI21
(DCONTINUUMBAND7_CI21)
--------------------------------------------------------------------------------
Note (1): Mara Salvato et al. in preparation
Note (2): Chabrier (2003PASP..115..763C 2003PASP..115..763C) initial mass function
Note (3): From modeling of the far-infrared SED with Draine & Li
(2007ApJ...657..810D 2007ApJ...657..810D) and Mullaney et al. (2011MNRAS.414.1082M 2011MNRAS.414.1082M) templates
Note (4): From Draine & Li (2007ApJ...657..810D 2007ApJ...657..810D) models
Note (5): Parameterized as in Sargent et al. (2014ApJ...793...19S 2014ApJ...793...19S).
Note (6): As in Puglisi et al. (2019ApJ...877L..23P 2019ApJ...877L..23P)
--------------------------------------------------------------------------------
Acknowledgements:
Francesco Valentino, francesco.valentino(at)nbi.ku.dk
(End) Patricia Vannier [CDS] 29-Jun-2020