J/A+A/639/A25         MCDHF calculations of Lande g-factors          (Li+, 2020)

Multiconfiguration Dirac-Hartree-Fock calculations of Lande g-factors for ions of astrophysical interest: B II, C I-IV, Al I-II, Si I-IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II. Li W., Rynkun P., Radziute L., Gaigalas G., Atalay B., Papoulia A., Wang K., Hartman H., Ekman J., Brage T., Chen C. Y., Jonsson P. <Astron. Astrophys. 639, A25 (2020)> =2020A&A...639A..25L 2020A&A...639A..25L (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: atomic data - magnetic fields Abstract: The Lande g-factor is an important parameter in astrophysical spectropolarimetry, used to characterize the response of a line to a given value of the magnetic field. The purpose of this paper is to present accurate Lande g-factors for states in BII, CI-IV, AlI-II, SiI-IV, PII, SII, ClIII, ArIV, CaI, TiII, ZrIII, and SnII. The multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2K, are employed in the present work to compute the Lande g-factors for states in BII, CI-IV, AlI-II, SiI-IV, PII, SII, ClIII, ArIV, CaI, TiII, ZrIII, and SnII. The accuracy of the wave functions for the states, and thus the accuracy of the resulting Lande g-factors, is evaluated by comparing the computed excitation energies and energy separations with the National Institute of Standards and Technology (NIST) recommended data. All excitation energies are in very good agreement with the NIST values except for TiII, which has an average difference of 1.06%. The average uncertainty of the energy separations is well below 1% except for the even states of AlI; odd states of SiI, CaI, TiII, ZrIII; and even states of SnII for which the relative differences range between 1% and 2%. Comparisons of the computed Lande g-factors are made with available NIST data and experimental values. Analysing the $LS$-composition of the wave functions, we quantify the departures from $LS$-coupling and summarize the states for which there is a difference of more than 10% between the computed Lande g-factor and the Lande g-factor in pure $LS$-coupling. Finally, we compare the computed Lande g-factors with values from the Kurucz database. Description: Tables 5-23 present the Lande g-factors of states for the BII, CI-IV, AlI-II, SiI-IV, PII, SII, ClIII, ArIV, CaI, TiII, ZrIII, and SnII ions. In the tables atomic state function composition, energy levels and Lande g-factors are given. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table5.dat 157 100 Lande g-fators for BII table6.dat 157 100 Lande g-fators for CI table7.dat 161 69 Lande g-fators for CII table8.dat 157 114 Lande g-fators for CIII table9.dat 157 53 Lande g-fators for CIV table10.dat 157 28 Lande g-fators for AlI table11.dat 157 78 Lande g-fators for AlII table12.dat 157 168 Lande g-fators for SiI table13.dat 157 56 Lande g-fators for SiII table14.dat 157 106 Lande g-fators for SiIII table15.dat 157 45 Lande g-fators for SiIV table16.dat 157 106 Lande g-fators for PII table17.dat 157 134 Lande g-fators for SII table18.dat 157 87 Lande g-fators for ClIII table19.dat 157 103 Lande g-fators for ArIV table20.dat 157 45 Lande g-fators for CaI table21.dat 161 99 Lande g-fators for TiII table22.dat 157 88 Lande g-fators for ZrIII table23.dat 157 22 Lande g-fators for SnII -------------------------------------------------------------------------------- Byte-by-byte Description of file: table*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- NO Sequential number 5- 48 A44 --- State State (2) 50-141 A92 --- LS LS components (1) 143-148 I6 cm-1 ERCI RCI energy level (relative to the ground state) 150-161 E12.8 --- g ? lande g-factors -------------------------------------------------------------------------------- Note (1): up to three LS components with a contribution >0.02 of the total wave function) in LS-coupling. -------------------------------------------------------------------------------- Note (2): Sepcial notes for States by tables. For table10.dat: The 3s24d 2D term is assigned twice and the subscripts a and b are used to distinguish them. For table12.dat: The 3s2 3p 2P 4d 1D2o, 3s2 3p 2P 4d 3P1o, 3s2 3p 2P 4d 3P0o, 3s2 3p 2P 4f 3G3, 3s2 3p 2P 4f 3F4, 3s2 3p 2P 6p 3D1, 3s2 3p 2P 5f 1F3, 3s2 3p 2P 5f 3F2, 3s2 3p 2P 5f 3F4, 3s2 3p 2P 5g 3G3o, 3s2 3p 2P 5g 3F4o, 3s2 3p 2P 5d 1P1o, 3s2 3p 2P 6d 3F2o, 3s2 3p 2P 6f 3D3, 3s2 3p 2P 6f 3F2 and 3s2 3p 2P 6d 1P1o states are assigned twice and the subscripts a and b are used to distinguish them. For table14.dat The 3s5f 1F3o_ state is assigned twice and the subscripts a and b are used to distinguish them. For table17.dat The 3s2 3p2(32P) 3P 4d 2P term and 3s2 3p2(32P) 3P 4f 4G5/2o state are assigned twice and the subscripts a and b are used to distinguish them. For table18.dat The 3s2 3p2(32P) 3P 3d 2P1/2, 3s2 3p2(32P) 3P 3d 4D5/2 and 3s2 3p2(12D) 1D 3d 2P3/2 states are assigned twice and the subscripts a and b are used to distinguish them. For table19.dat The 3s2 3p2(32P) 3P 4p 4D1/2o and 3s2 3p2(32P) 3P 4p 4D3/2o states are assigned twice and the subscripts a and b are used to distinguish them. For table22.dat The 4d 2D 5d 3G3 and 4d 2D 6p 1D2o states are assigned twice and the subscripts a and b are used to distinguish them. -------------------------------------------------------------------------------- Acknowledgements: Wenxian Li, wenxian.li(at)mau.se
(End) Wenxian Li [MAU], Patricia Vannier [CDS] 18-May-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line