J/A+A/635/A70  Plasma environment effects on Fe IX-XVI K lines (Deprince+, 2020)

Plasma-environment effects on K lines of astrophysical interest. III. IPs, K thresholds, radiative rates and Auger widths in Fe IX - Fe XVI. Deprince J., Bautista M.A., Fritzsche S., Garcia J., Kallman T., Mendoza C., Palmeri P., Quinet P. <Astron. Astrophys. 635, A70 (2020)> =2020A&A...635A..70D 2020A&A...635A..70D (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: black hole physics - plasmas - atomic data - X-rays: general Abstract: In the context of black-hole accretion disks, we have computed plasma environment effects on the atomic parameters used to model the decay of K-vacancy states in moderately charged iron ions, namely FeIX-FeXVI. We use the fully relativistic multiconfiguration Dirac-Fock (MCDF) method approximating the plasma electron-nucleus and electron-electron screenings with a time-averaged Debye-Huckel potential. Modified ionization potentials, K thresholds, wavelengths, radiative emission rates and Auger widths are reported for astrophysical plasmas characterized by electron temperatures and densities respectively in the ranges 105-107K and 1018-1022cm-3. This study confirms that the high-resolution X-ray spectrometers onboard the future XRISM and ATHENA space missions could detect the lowering of the K edges of these ions due to the extreme plasma conditions occurring in accretion disks around compact objects. Description: Computed wavelengths, transition probabilies and Auger widths for three values of the plasma screening parameter (mu) in iron ions from FeIX (Zeff=9) to FeXVI (Zeff=16) are given in these two tables. In Table 5 the iron ions are identified by their effective charge (Zeff) and the transitions by their identification (Trans). For each transition, the wavelengths and the transition probabilities are given for mu=0, 0.1 and 0.25a.u. In Table 6 the iron ions are identified with their effective charge (Zeff) and the K-vacancy level by their designation (Lev). For each level, the Auger widths are given for mu=0, 0.1 and 0.25a.u. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table5.dat 98 397 Wavelengths and Transition probabilities table6.dat 56 47 Auger widths -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Zeff Effective charge 4- 42 A39 --- Trans Transition identification 49- 54 F6.4 0.1nm WL1 Wavelength in Angstrom (mu=0a.u.) 56- 61 F6.4 0.1nm WL2 Wavelength in Angstrom (mu=0.1a.u.) 63- 68 F6.4 0.1nm WL3 Wavelength in Angstrom (mu=0.25a.u.) 70- 78 E9.3 s-1 Ar1 Transition probability (mu=0a.u.) 80- 88 E9.3 s-1 Ar2 Transition probability (mu=0.1a.u.) 90- 98 E9.3 s-1 Ar3 Transition probability (mu=0.25a.u.) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Zeff Effective charge 4- 21 A18 --- Lev K-vacancy level 28- 36 E9.3 s-1 Aa1 Auger width (mu=0a.u.) 38- 46 E9.3 s-1 Aa2 Auger width (mu=0.1a.u.) 48- 56 E9.3 s-1 Aa3 Auger width (mu=0.25a.u.) -------------------------------------------------------------------------------- Acknowledgements: Patrick Palmeri, patrick.palmeri(at)umons.ac.be
(End) Patrick Palmeri [UMONS], Patricia Vannier [CDS] 31-Jan-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line