J/A+A/635/A70 Plasma environment effects on Fe IX-XVI K lines (Deprince+, 2020)
Plasma-environment effects on K lines of astrophysical interest.
III. IPs, K thresholds, radiative rates and Auger widths in Fe IX - Fe XVI.
Deprince J., Bautista M.A., Fritzsche S., Garcia J., Kallman T.,
Mendoza C., Palmeri P., Quinet P.
<Astron. Astrophys. 635, A70 (2020)>
=2020A&A...635A..70D 2020A&A...635A..70D (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: black hole physics - plasmas - atomic data - X-rays: general
Abstract:
In the context of black-hole accretion disks, we have computed plasma
environment effects on the atomic parameters used to model the decay
of K-vacancy states in moderately charged iron ions, namely
FeIX-FeXVI.
We use the fully relativistic multiconfiguration Dirac-Fock (MCDF)
method approximating the plasma electron-nucleus and electron-electron
screenings with a time-averaged Debye-Huckel potential.
Modified ionization potentials, K thresholds, wavelengths, radiative
emission rates and Auger widths are reported for astrophysical plasmas
characterized by electron temperatures and densities respectively in
the ranges 105-107K and 1018-1022cm-3.
This study confirms that the high-resolution X-ray spectrometers
onboard the future XRISM and ATHENA space missions could detect the
lowering of the K edges of these ions due to the extreme plasma
conditions occurring in accretion disks around compact objects.
Description:
Computed wavelengths, transition probabilies and Auger widths for
three values of the plasma screening parameter (mu) in iron ions from
FeIX (Zeff=9) to FeXVI (Zeff=16) are given in these two tables.
In Table 5 the iron ions are identified by their effective charge
(Zeff) and the transitions by their identification (Trans). For each
transition, the wavelengths and the transition probabilities are given
for mu=0, 0.1 and 0.25a.u.
In Table 6 the iron ions are identified with their effective charge
(Zeff) and the K-vacancy level by their designation (Lev). For each
level, the Auger widths are given for mu=0, 0.1 and 0.25a.u.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table5.dat 98 397 Wavelengths and Transition probabilities
table6.dat 56 47 Auger widths
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Zeff Effective charge
4- 42 A39 --- Trans Transition identification
49- 54 F6.4 0.1nm WL1 Wavelength in Angstrom (mu=0a.u.)
56- 61 F6.4 0.1nm WL2 Wavelength in Angstrom (mu=0.1a.u.)
63- 68 F6.4 0.1nm WL3 Wavelength in Angstrom (mu=0.25a.u.)
70- 78 E9.3 s-1 Ar1 Transition probability (mu=0a.u.)
80- 88 E9.3 s-1 Ar2 Transition probability (mu=0.1a.u.)
90- 98 E9.3 s-1 Ar3 Transition probability (mu=0.25a.u.)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Zeff Effective charge
4- 21 A18 --- Lev K-vacancy level
28- 36 E9.3 s-1 Aa1 Auger width (mu=0a.u.)
38- 46 E9.3 s-1 Aa2 Auger width (mu=0.1a.u.)
48- 56 E9.3 s-1 Aa3 Auger width (mu=0.25a.u.)
--------------------------------------------------------------------------------
Acknowledgements:
Patrick Palmeri, patrick.palmeri(at)umons.ac.be
(End) Patrick Palmeri [UMONS], Patricia Vannier [CDS] 31-Jan-2020