J/A+A/635/A104      Chemical abundance analysis of HD 20         (Hanke+, 2020)

A high-precision abundance analysis of the nuclear benchmark star HD 20. Hanke M., Hansen C.J., Ludwig H.-G., Cristallo S., McWilliam A., Grebel E. K., Piersanti L. <Astron. Astrophys. 635, A104 (2020)> =2020A&A...635A.104H 2020A&A...635A.104H (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics; Spectroscopy; Abundances; Stars, metal-deficient; Equivalent widths Keywords: stars: abundances - stars: chemically peculiar - stars: individual: HD 20 - stars: evolution - Galaxy: halo - nuclear reactions, nucleosynthesis, abundances Abstract: Metal-poor stars with available detailed information about their chemical inventory pose powerful empirical benchmarks for nuclear astrophysics. Here we present our spectroscopic chemical abundance investigation of the metal-poor ([Fe/H]=-1.60dex), r-process-enriched ([Eu/Fe]=0.73dex) halo star HD 20 using novel and archival high-resolution data at outstanding signal-to-noise ratios (up to 1000 per Angstroem). By combining one of the first asteroseismic gravity measurements in the metal-poor regime from a TESS light curve with the spectroscopic analysis of iron lines under non-local thermodynamic equilibrium conditions, we derive a set of highly accurate and precise stellar parameters. These allow us to delineate a reliable chemical pattern that is comprised of solid detections of 48 elements, including 28 neutron-capture elements. Hence, we establish HD 20 among the few benchmark stars that have almost complete patterns and possess low systematic dependencies on the stellar parameters. Our light-element (Z<30) abundances are representative of other, similarly metal-poor stars in the Galactic halo with contributions from core-collapse supernovae of type II. In the realm of the neutron-capture elements, our comparison to the scaled solar r-pattern shows that the lighter neutron-capture elements (Z<60) are poorly matched. In particular, we find imprints of the weak r-process acting at low metallicities. Nonetheless, by comparing our detailed abundances to the observed metal-poor star BD +17 3248, we find a persistent residual pattern involving mainly the elements Sr, Y, Zr, Ba, and La. These are indicative of enrichment contributions from the s-process and we show that mixing with material from predicted yields of massive, rotating AGB stars at low metallicity considerably improves the fit. Based on a solar ratio of heavy- to light-s elements -- at odds with model predictions for the i-process -- and a missing clear residual pattern with respect to other stars with claimed contributions from this process, we refute (strong) contributions from such astrophysical sites providing intermediate neutron densities. Finally, nuclear cosmochronology is used to tie our detection of the radioactive element Th to an age estimate for HD 20 of 11.0±3.8Gyr. Description: Equivalent widths (EWs) measured from HD 20's spectra using EWCODE are presented alongside individual transition parameters and deduced abundances. Profiles for which a standard EW analysis was prohibited were analyzed using spectrum synthesis. NLTE corrections were performed and are listed whenever available. Objects: ------------------------------------------- RA (2000) DE Designation(s) ------------------------------------------- 00 05 15.32 -27 16 18.1 HD 20 = HIP 434 ------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablec1.dat 74 464 Atomic data, equivalent widths, and abundances -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.3 0.1nm lambda Wavelength 10- 15 A6 --- Ion Ion designation 17- 21 F5.3 eV chiex ? Excitation potential 23- 29 F7.3 [-] loggf ? Oscillator strength 31- 35 F5.1 0.1pm EW ? Equivalent width 37- 40 F4.1 0.1pm e_EW ? Equivalent width error 42- 46 F5.2 [-] logeps LTE abundance 48- 51 F4.2 [-] e_logeps ? LTE abundance error 53- 56 F4.2 [-] logepsNLTE ? NLTE abundance 58- 62 F5.2 [-] deltaNLTE ? NLTE correction 64- 68 A5 --- Ref Reference flag (1) 70- 72 A3 --- Note [12, ]? Special note flag (2) 74 I1 --- l_logeps [3]? 3 for upper limit abundance -------------------------------------------------------------------------------- Note (1): References: 1 = Hobbs et al. (1999ApJ...523..797H 1999ApJ...523..797H) 2 = Masseron et al. (2014, Cat. J/A+A/571/A47) 3 = Kurucz & Bell (1995, Atomic line list) 4 = Wiese et al. (1966, Atomic transition probabilities. Vol. 1: Hydrogen through Neon. A critical data compilation) 5 = Kramida et al. (2018, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, August 19]. National Institute of Standards and Technology, Gaithersburg, MD.) 6 = Pehlivan Rhodin et al. (2017A&A...598A..20G 2017A&A...598A..20G) 7 = Smith & Liszt (1971, of the Optical Society of America (1917-1983), 61, 938) 8 = Wiese et al. (1969, Atomic transition probabilities. Vol. 2: Sodium through Calcium. A critical data compilation) 9 = Garz (1973A&A....26..471G 1973A&A....26..471G) 10 = Piskunov et al. (1995A&AS..112..525P 1995A&AS..112..525P) 11 = Biemont et al. (1993, Cat. J/A+AS/102/435) 12 = Smith & Raggett (1981, Journal of Physics B Atomic Molecular Physics, 14, 4015) 13 = Smith (1981A&A...103..351S 1981A&A...103..351S) 14 = Smith (1988, Journal of Physics B Atomic Molecular Physics, 21, 2827) 15 = Smith & O'Neill (1975A&A....38....1S 1975A&A....38....1S) 16 = Lawler & Dakin (1989, Journal of the Optical Society of America B Optical Physics, 6, 1457) 17 = Lawler et al. (2013ApJS..205...11L 2013ApJS..205...11L) 18 = Nitz et al. (1998ApJS..117..313N 1998ApJS..117..313N) 19 = Martin et al. (1988, Cat. VI/72)) 20 = Wood et al. (2013, Cat. J/ApJS/208/27) 21 = Bizzarri et al. (1993A&A...273..707B 1993A&A...273..707B) 22 = Pickering et al. (2001ApJS..132..403P 2001ApJS..132..403P) 23 = Ryabchikova et al. (1994MNRAS.267..697R 1994MNRAS.267..697R) 24 = Lawler et al. (2014, Cat. J/ApJS/215/20) 25 = Wood et al. (2014, Cat. J/ApJS/214/18) 26 = Sobeck et al. (2007, Cat. J/ApJ/667/1267) 27 = Raassen & Uylings (1998, Cat. J/A+A/340/300) 28 = Pinnington et al. (1993, Canadian Journal of Physics, 71, 470) 29 = Sigut & Landstreet (1990MNRAS.247..611S 1990MNRAS.247..611S) 30 = Den Hartog et al. (2011, Cat. J/ApJS/194/35) 31 = Bard & Kock (1994A&A...282.1014B 1994A&A...282.1014B) 32 = O'Brian et al. (1991, Journal of the Optical Society of America B Optical Physics, 8, 1185) 33 = Fuhr et al. (1988, Cat. VI/72) 34 = Bard et al. (1991A&A...248..315B 1991A&A...248..315B) 35 = Schnabel et al. (2004A&A...414.1169S 2004A&A...414.1169S) 36 = Wood et al. (2014, Cat. J/ApJS/211/20) 37 = Warner (1968MNRAS.140...53W 1968MNRAS.140...53W) 38 = Shirai et al. (2007, Journal of Physical and Chemical Reference Data, 36, 509) 39 = Warner (1968MNRAS.139..115W 1968MNRAS.139..115W) 40 = Parkinson et al. (1976, of Physics B Atomic Molecular Physics, 9, 157) 41 = Hannaford et al. (1982ApJ...261..736H 1982ApJ...261..736H) 42 = Pitts & Newsom (1986, J. Quant. Spectr. Rad. Transf., 35, 383) 43 = Ljung et al. (2006A&A...456.1181L 2006A&A...456.1181L) 44 = Cowley & Corliss (1983MNRAS.203..651C 1983MNRAS.203..651C) 45 = Whaling & Brault (1988, Phys. Scr, 38, 707) 46 = Wickliffe et al. (1994, J. Quant. Spectr. Rad. Transf., 51, 545) 47 = Kwiatkowski et al. (1982A&A...112..337K 1982A&A...112..337K) 48 = Biemont et al. (1984A&A...131..364B 1984A&A...131..364B) 49 = Migdalek (1978, J. Quant. Spectr. Rad. Transf., 20, 81) 50 = Hansen et al. (2012A&A...545A..31H 2012A&A...545A..31H) 51 = McWilliam (1998AJ....115.1640M 1998AJ....115.1640M) 52 = Lawler et al. (2001ApJ...556..452L 2001ApJ...556..452L) 53 = Corliss & Bozman (1962, Experimental transition probabilities for spectral lines of seventy elements; derived from the NBS Tables of spectral line intensities) 54 = Lawler et al. (2009, Cat. J/ApJS/182/51) 55 = Sneden et al. (2009, Cat. J/ApJS/182/80) 56 = Den Hartog et al. (2003ApJS..148..543D 2003ApJS..148..543D) 57 = Meggers et al. (1994ARA&A..32..153M 1994ARA&A..32..153M) 58 = Lawler et al. (2006, Cat. J/ApJS/162/227) 59 = Lawler et al. (2001ApJ...563.1075L 2001ApJ...563.1075L) 60 = Den Hartog et al. (2006, Cat. J/ApJS/167/292) 61 = Lawler et al. (2001ApJS..137..341L 2001ApJS..137..341L) 62 = Wickliffe et al. (2000, J. Quant. Spectr. Rad. Transf., 66, 363) 63 = Lawler et al. (2004ApJ...604..850L 2004ApJ...604..850L) 64 = Lawler et al. (2008ApJS..178...71L 2008ApJS..178...71L) 65 = Wickliffe & Lawler (1997, Journal of the Optical Society of America B Optical Physics, 14, 737) 66 = Lawler et al. (2007, Cat. J/ApJS/169/120) 67 = Ivarsson et al. (2003A&A...409.1141I 2003A&A...409.1141I) 68 = Biemont et al. (2000MNRAS.312..116B 2000MNRAS.312..116B) 69 = Nilsson et al. (2002A&A...382..368N 2002A&A...382..368N) 70 = Nilsson et al. (2002A&A...381.1090N 2002A&A...381.1090N) Note (2): Special treatments in the analysis: 1 = Additional hyperfine structure was considered 2 = Abundance from spectrum synthesis -------------------------------------------------------------------------------- Acknowledgements: Michael Hanke, mhanke(at)ari.uni-heidelberg.de
(End) Michael Hanke [ARI, Germany], Patricia Vannier [CDS] 04-Feb-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line