J/A+A/633/A69 KiDS-VIKING-450 cosmic shear (Hildebrandt+, 2020)
KiDS-VIKING-450: Cosmic shear tomography with optical and infrared data.
Hildebrandt H., Koehlinger F., van den Busch J.L., Joachimi B., Heymans C.,
Kannawadi A., Wright A.H., Asgari M., Blake C., Hoekstra H., Joudaki S.,
Kuijken K., Miller L., Morrison C.B., Troester T., Amon A., Archidiacono M.,
Brieden S., Choi A., de Jong J.T.A., Erben T., Giblin B., Mead A.,
Peacock J.A., Radovich M., Schneider P., Sifon C., Tewes M.
<Astron. Astrophys. 633, A69 (2020)>
=2020A&A...633A..69H 2020A&A...633A..69H (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Redshifts ; Optical ; Infrared
Keywords: cosmology: observations - gravitational lensing: weak -
galaxies: photometry - surveys
Abstract:
We present a tomographic cosmic shear analysis of the Kilo-Degree
Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy
Survey (VIKING). This is the first time that a full optical to
near-infrared data set has been used for a wide-field cosmological
weak lensing experiment. This unprecedented data, spanning 450 deg2,
allows us to significantly improve the estimation of photometric
redshifts, such that we are able to include robustly higher-redshift
sources for the lensing measurement, and - most importantly - to
solidify our knowledge of the redshift distributions of the sources.
Based on a flat LCDM model we find S8=0.737+0.040-0.036 in a
blind analysis from cosmic shear alone. The tension between KiDS
cosmic shear and the Planck Legacy CMB measurements remains in this
systematically more robust analysis, with S8 differing by
2.3σ. This result is insensitive to changes in the priors on
nuisance parameters for intrinsic alignment, baryon feedback, and
neutrino mass. KiDS shear measurements are calibrated with a new, more
realistic set of image simulations and no significant B-modes are
detected in the survey, indicating that systematic errors are under
control. When calibrating our redshift distributions by assuming the
30-band COSMOS-2015 photometric redshifts are correct (following the
Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the
tension with Planck is alleviated. The robust determination of source
redshift distributions remains one of the most challenging aspects for
future cosmic shear surveys. Data products from this analysis are
available at http://kids.strw.leidenuniv.nl.
Description:
Here we provide:
1) The data vector (tomographic two-point correlation function)
2) The covariance matrix
3) The redshift distributions
4) The fiducial output chains of the likelihood analysis
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablee1.dat 36 195 Cosmic shear data vector
tablee2.dat 31 38025 Covariance matrix in list format
tablee3.dat 14 120 Redshift distribution of the 1st tomographic bin
(0.1<zB≤0.3)
tablee4.dat 14 120 Redshift distribution of the 2nd tomographic bin
(0.3<zB≤0.5)
tablee5.dat 14 120 Redshift distribution of the 3rd tomographic bin
(0.5<zB≤0.7)
tablee6.dat 14 120 Redshift distribution of the 4th tomographic bin
(0.7<zB≤0.9)
tablee7.dat 14 120 Redshift distribution of the 5th tomographic bin
(0.9<zB≤1.2)
tablee8.dat 305 12317 Likelihood chain
--------------------------------------------------------------------------------
See also:
http://kids.strw.leidenuniv.nl : KiDS Home Page
Byte-by-byte Description of file: tablee1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq Running number of the data point
7- 17 E11.5 arcmin Scale Angular scale
19- 30 E12.5 --- CFA Correlation function amplitude
32 I1 --- CFT [1/2] Correlation function type
(1: xi_plus, 2: xi_minus)
34 I1 --- N1 Number of one of the tomographic bins entering
the cross-correlation
36 I1 --- N2 Number of the other tomographic bin entering
the cross-correlation
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablee2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq1 Running number of the 1st data point
7- 9 I3 --- Seq2 Running number of the 2nd data point
11- 31 E21.15 --- Cov Covariance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablee[34567].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.3 --- zbin Left edge of redshift bin
7- 14 F8.6 --- nz Redshift density, n(z)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablee8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 17 E15.8 --- Weigth Weight of the point
19- 33 E15.8 --- mlogLH minus log likelihood
35- 49 E15.8 --- OmegaCDM CDM density, ΩCDMh2
51- 65 E15.8 [-] ln(10+10As) Scalar spectrum amplitude ln(1010*As)
67- 81 E15.8 --- Omegab Baryon density, Ωbh2
83- 97 E15.8 --- ns Scalar spectral index
99-113 E15.8 --- h Hubble parameter (h=H0/(100km/Mpc/s))
115-129 E15.8 --- AIA Amplitude for intrinsic alignments
131-145 E15.8 --- cmin MCode parameter B for the baryon
feedback model
147-161 E15.8 --- dc Nuisance parameter for the constant c-term
163-177 E15.8 --- Ac Nuisance parameter for the 2D c-term
amplitude
179-193 E15.8 --- Dz1 Redshift uncertainty in bin 1
195-209 E15.8 --- Dz2 Redshift uncertainty in bin 2
211-225 E15.8 --- Dz3 Redshift uncertainty in bin 3
227-241 E15.8 --- Dz4 Redshift uncertainty in bin 4
243-257 E15.8 --- Dz5 Redshift uncertainty in bin 5
259-273 E15.8 --- Omegam Matter density, Ωm
275-289 E15.8 --- sigma8 Power spectrum amplitude, σ8
291-305 E15.8 --- S8 σ8*SQRT(Ωm/0.3)
--------------------------------------------------------------------------------
Acknowledgements:
Hendrik Hildebrandt, hendrikhildebrandt(at)gmail.com
(End) Patricia Vannier [CDS] 21-Nov-2019