Access to Astronomical Catalogues

← Click to display the menu
J/ApJS/229/34  Effects of preionization in radiative shocks  (Sutherland+, 2017)

Effects of preionization in radiative shocks. I. Self-consistent models. Sutherland R.S., Dopita M.A. <Astrophys. J. Suppl. Ser., 229, 34-34 (2017)> =2017ApJS..229...34S (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Magnetic fields Keywords: atomic data; atomic processes; radiative transfer; shock waves Abstract: In this paper we treat the preionization problem in shocks over the velocity range 10<vs<1500km/s in a self-consistent manner. We identify four distinct classes of solutions controlled by the value of the shock-precursor parameter, Ψ=Q/vs, where Q is the ionization parameter of the UV photons escaping upstream. This parameter determines both the temperature and the degree of ionization of the gas entering the shock. In increasing velocity, the shock solution regimes are cold neutral precursors (vs≲40km/s), warm neutral precursors (40≲vs≲75km/s), warm partly ionized precursors (75≲vs≲120km/s), and fast shocks in which the preshock gas is in photoionization equilibrium and is fully ionized. The main effect of a magnetic field is to push these velocity ranges to higher values and to limit the postshock compression. In order to facilitate comparison with observations of shocks, we provide a number of convenient scaling relationships for parameters, such as postshock temperature, compression factors, cooling lengths, and Hβ and X-ray luminosity. File Summary:
FileName Lrecl Records Explanations
ReadMe 80 . This file table12.dat 106 1425 Shock structural parameters table13.dat 112 1425 Further shock structural parameters table14.dat 120 1425 Shock radiation parameters table15.dat 72 1425 Shock 4π steradian Balmer line radiation
See also: J/ApJS/208/10 : Effects of κ-distribution in HII regions (Dopita+, 2013) J/ApJ/752/148 : κ-distributed electrons & OIII em. line (Nicholls+, 2012) J/ApJ/619/755 : Modeling starburst SEDs (Dopita+, 2005) Byte-by-byte Description of file: table12.dat
Bytes Format Units Label Explanations
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio ηM (2PB/Pram) 10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss 21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00 or "infty") 28- 35 E8.2 --- R Ram pressure variable (G1) 37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2 47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity 52- 60 E9.8 cm-3 nH [0.004/251200] Hydrogen density 62- 70 E9.3 K PreT [10/59790] Pre-shock temperature 72- 80 E9.3 K PostT [6251/31920000] Post-shock temperature 82- 90 E9.3 --- HI H I ionization fraction 92-100 E9.3 --- HII H II ionization fraction 102-106 F5.3 --- Mass [0.6/1.3] Particle mass; a.m.u.
Byte-by-byte Description of file: table13.dat
Bytes Format Units Label Explanations
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio ηM (2PB/Pram) 10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss 21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00 or "infty") 28- 35 E8.2 --- R Ram pressure variable (G1) 37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2 47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity 52- 56 F5.2 --- Mach [3.3/88.1] Mach number 58- 66 E9.3 --- Prea [0/646] Pre-shock magnetic α; PB/Pgas 68- 76 E9.3 --- Posta [0/0.4] Post-shock magnetic α; PB/Pgas 78- 82 F5.3 --- Jump [2.6/4] Compresion jump factor 84- 92 E9.3 --- Max [3/169800] Maximum compression factor (1) 94-102 E9.3 cm-2 lam4 Cooling column density; λ4 104-112 E9.3 cm-2 lam3 Cooling column density; λ3
Note (1): using density after cooling to log10(T)=3.0
Byte-by-byte Description of file: table14.dat
Bytes Format Units Label Explanations
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio ηM (2PB/Pram) 10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss 21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00 or "infty") 28- 35 E8.2 --- R Ram pressure variable (G1) 37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2 47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity 52- 60 E9.3 cm-3 nH [0.004/251200] Hydrogen density 62- 70 E9.3 --- PsiTot Total photon production parameter 72- 80 E9.3 --- PsiH [0/24] Hydrogen-ionizing photon production parameter 82- 90 E9.3 --- PsiKeV [0/0.9] X-ray-ionizing photon production parameter 92-100 E9.3 --- PhiTot Total energy production parameter 102-110 E9.3 --- PhiH Hydrogen-ionizing energy production parameter 112-120 E9.3 --- PhiKeV X-ray-ionizing energy production parameter
Byte-by-byte Description of file: table15.dat
Bytes Format Units Label Explanations
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio ηM (2PB/Pram) 11- 16 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00 or "infty") 18- 25 E8.2 --- R Ram pressure variable (G1) 27- 30 F4.2 [km/s] logVs [1.3/3.2] Log velocity 32- 40 E9.3 cm-3 nH [0.004/251200] Hydrogen density 42- 50 E9.3 --- PsiHb Hβ photon production parameter (1) 52- 60 E9.3 --- PsiHa Hα photon production parameter (1) 62- 66 F5.3 --- PhRatio [3.9/8.1] Ratio of Hβ to Hα photon production parameters 68- 72 F5.3 --- IntRatio [2.9/6] Ratio of Hβ to Hα intensities
Note (1): Where Φ = 4.0862e-12 Ψ and Φ = 3.0268e-12 Ψ
Global notes: Note (G1): nH*v2s : nH in cm-3, vs in km/s
History: From electronic version of the journal References: Dopita et al. Paper II. 2017ApJS..229...35D
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 20-Jun-2017
The document above follows the rules of the Standard Description for Astronomical Catalogues.From this documentation it is possible to generate f77 program to load files into arrays or line by line

catalogue service

© UDS/CNRS

Contact