Access to Astronomical Catalogues

← Click to display the menu
J/AJ/134/252         New nearby white dwarf systems          (Subasavage+, 2007)

The solar neighborhood. XIX. Discovery and characterization of 33 new nearby white dwarf systems. Subasavage J.P., Henry T.J., Bergeron P., Dufour P., Hambly N.C., Beaulieu T.D. <Astron. J., 134, 252-261 (2007)> =2007AJ....134..252S
ADC_Keywords: Stars, nearby ; Stars, white dwarf ; Photometry, infrared ; Effective temperatures Keywords: solar neighborhood - stars: distances - stars: evolution - stars: statistics - white dwarfs Abstract: We present spectra for 33 previously unclassified white dwarf systems brighter than V=17, primarily in the southern hemisphere. Of these new systems, 26 are DA, 4 are DC, 2 are DZ, and 1 is DQ. We suspect that three of these systems are unresolved double degenerates. We obtained VRI photometry for these 33 objects, as well as for 23 known white dwarf systems without trigonometric parallaxes, also primarily in the southern hemisphere. For the 56 objects, we converted the photometry values to fluxes and fit them to a spectral energy distribution using the spectroscopy to determine which model to use (i.e., pure hydrogen, pure helium, or metal-rich helium), resulting in estimates of Teff and distance. Description: Spectroscopic observations were taken on five separate observing runs in 2003 October and December, 2004 March and September, and 2006 May at the Cerro Tololo Inter-American Observatory (CTIO) 1.5m telescope as part of the Small and Moderate Aperture Research Telescope System (SMARTS) Consortium. File Summary:
FileName Lrecl Records Explanations
ReadMe 80 . This file table1.dat 106 57 Optical and infrared photometry and derived parameters for new and known white dwarfs table3.dat 86 57 Astrometry and alternate designations for new and known white dwarfs
See also: J/AJ/129/413 : New high proper motion stars (-90<DE←47) (Subasavage+, 2005) J/AJ/130/1658 : New high proper motion stars (-47<DE←00) (Subasavage+, 2005) J/AJ/133/2898 : New proper-motion stars (-90<DE←47) (Finch+, 2007) Byte-by-byte Description of file: table1.dat
Bytes Format Units Label Explanations
1 I1 --- n_WD [1/3] New or nearby WD (G1) 3- 11 A9 --- WD WD Name (HHMM+DDdA) 14- 18 F5.2 mag Vmag Johnson V magnitude 20- 24 F5.2 mag Rcmag Cousins R magnitude 26- 30 F5.2 mag Icmag Cousins I magnitude 32 I1 --- Nobs Number of observations 34- 38 F5.2 mag Jmag J magnitude 40- 43 F4.2 mag e_Jmag rms uncertainty on Jmag 45- 49 F5.2 mag Hmag H magnitude 51- 54 F4.2 mag e_Hmag ? rms uncertainty on Hmag 56- 60 F5.2 mag Ksmag Ks magnitude 62- 65 F4.2 mag e_Ksmag ? rms uncertainty on Ksmag 67- 71 I5 K Teff ? Effective temperature 73- 76 I4 K e_Teff ? rms uncertainty on Teff 78- 85 A8 --- Comp Composition (main chemical elements) 87- 90 F4.1 pc Dist ? Distance 92- 95 F4.1 pc e_Dist ? rms uncertainty on Dist 97-102 A6 --- SpType MK Spectral type 105-106 I2 --- Rem [1/12]? Individual notes (1)
Note (1): Individual notes as follows: 1 = Distance via SED fit (not listed) is underestimated because the object is likely an unresolved double degenerate with one magnetic component (see Sect. 4.2). Instead, we adopt the trigonometric parallax distance of 17.7±0.7pc derived via CTIOPI. 2 = Distance via SED fit (not listed) is underestimated because the object is likely a distant (well beyond 25pc) unresolved double degenerate (see Sect. 4.2). 3 = Distance via SED fit (not listed) is underestimated because the object is likely a distant (well beyond 25pc) unresolved double degenerate with components of type DA and DB (see Sect. 4.2). Temperatures derived from the spectroscopic fit yield 9640±303 and 14170±1228K for DA and DB, respectively. 4 = Object is likely cooler than Teff∼5000K, and the theoretical models do not provide an accurate treatment at these temperatures (see Sect. 4.2). Instead, we use the linear photometric distance relation of Salim et al. (2004ApJ...601.1075S) and obtain a distance estimate of 19.3±3.9pc. 5 = This object was observed as part of the EC survey and was classified as an sdB+ (Kilkenny et al. 1997, Cat. J/MNRAS/287/867). 6 = Distance of 19.1±3.0pc is estimated using VRIJHKS for the common proper-motion companion M dwarf and the relations of Henry et al. (2004AJ....128.2460H). System is possibly within 25pc (see Sect. 4.2). 7 = Distance estimate is undetermined. Instead, we adopt the distance measured via trigonometric parallax of 17.1±0.4pc (see Sect. 4.2). 8 = Not listed in McCook & Sion (1999ApJS..121....1M, III/210, III/235) but identified as a DC/DQ WD by Henry et al. (2002AJ....123.2002H). We obtained blue spectra that show Ca II H and K absorption and classify this object as DZ. 9 = The SED fit to the photometry is marginal. This object displays deep swan-band absorption that significantly affects its measured magnitudes. 10 = Not listed in McCook & Sion (1999ApJS..121....1M, III/210, III/235) but identified as a WD by Luyten (1949ApJ...109..528L). Spectral type is derived from our spectra. 11 = As of mid-2004, object has moved onto a background source. Photometry is probably contaminated, which is consistent with the poor SED fit for this object. 12 = Spectral type was determined using spectra published by Scholz et al. (2002ApJ...565..539S).
Byte-by-byte Description of file: table3.dat
Bytes Format Units Label Explanations
1 I1 --- n_WD [1/3] New or nearby WD (G1) 3- 11 A9 --- WD WD Name (HHMM+DDdA) 13- 14 I2 h RAh Right ascension (J2000) 16- 17 I2 min RAm Right ascension (J2000) 19- 23 F5.2 s RAs Right ascension (J2000) 25 A1 --- DE- Declination sign (J2000) 26- 27 I2 deg DEd Declination (J2000) 29- 30 I2 arcmin DEm Declination (J2000) 32- 35 F4.1 arcsec DEs Declination (J2000) 37- 41 F5.3 arcsec/yr pm Total proper motion 43- 47 F5.1 deg pmPA Proper motion position angle 49 I1 --- r_pm Reference for proper motion (2) 51- 86 A36 --- ONames Alternative name(s)
Note (2): References as follows: 1 = Luyten 1979, LHS Catalogue (I/87), NLTT Catalogue (I/98) 2 = Subasavage et al., 2005, Cat. J/AJ/129/413, J/AJ/130/1658, this work 3 = Pokorny et al., 2004, Cat. J/A+A/421/763 4 = Lepine et al., 2003AJ....126..921L, 2005ApJ...633L.121L 5 = Oppenheimer et al., 2001, Cat. J/other/Sci/292/698
Global notes: Note (G1): Types as follows: 1 = New spectroscopically confirmed WDs 2 = Known WDs without a trigonometric parallax estimated to be within 25pc 3 = Known WDs without a trigonometric parallax estimated to be beyond 25pc
History: From electronic version of the journal References: Henry et al., Paper I 1994AJ....108.1437H Kirkpatrick et al., Paper II 1995AJ....109..797K Simons et al., Paper III 1996AJ....112.2238S Henry et al., Paper IV 1997AJ....114..388H Patterson et al., Paper V 1998AJ....115.1648P Henry et al., Paper VI 2002AJ....123.2002H Jao et al., Paper VII 2003AJ....125..332J Hambly et al., Paper VIII 2004AJ....128..437H Golimowski et al., Paper IX 2004AJ....128.1733G Henry et al., Paper X 2004AJ....128.2460H Deacon et al., Paper XI 2005AJ....129..409D Subasavage et al., Paper XII 2005AJ....129..413S, Cat. J/AJ/129/413 Jao et al., Paper XIII 2005AJ....129.1954J Costa et al., Paper XIV 2005AJ....130..337C Subasavage et al., Paper XV 2005AJ....130.1658S, Cat. J/AJ/130/1658 Costa et al,, Paper XVI 2006AJ....132.1234C Henry et al., Paper XVII 2006AJ....132.2360H Finch et al., Paper XVIII 2007AJ....133.2898F, Cat. J/AJ/133/2898 Subasavage et al., Paper XX 2008AJ....136..899S Subasavage et al., Paper XXI 2009AJ....137.4547S Riedel et al., Paper XXII 2010AJ....140..897R Winters et al., Paper XXIII 2011AJ....141...21W, Cat. J/AJ/141/21 Jao et al., Paper XXIV 2011AJ....141..117J Boyd et al., Paper XXV 2011AJ....142...10B, Cat. J/AJ/142/10 Riedel et al., Paper XXVI 2011AJ....142..104R Boyd et al., Paper XXVII 2011AJ....142...92B, Cat. J/AJ/142/92 Dieterich et al., Paper XXVIII 2012AJ....144...64D, Cat. J/AJ/144/64 Cantrell et al., Paper XXIX 2013AJ....146...99C Mamajek et al., Paper XXX 2013AJ....146..154M Jao et al., Paper XXXI 2014AJ....147...21J Dieterich et al., Paper XXXII 2014AJ....147...94D, Cat. J/AJ/147/94 Riedel et al., Paper XXXIII 2014AJ....147...85R Lurie et al., Paper XXXIV 2014AJ....148...91L Winters et al., Paper XXXV 2015AJ....149....5W, Cat. J/AJ/149/5 Hosey et al., Paper XXXVI 2015AJ....150....6H, Cat. J/AJ/150/6 Benedict et al., Paper XXXVII 2016AJ....152..141B, Cat. J/AJ/152/141 Winters et al., Paper XXXVIII 2017AJ....153...14W, Cat. J/AJ/153/14 Subasavage et al., Paper XXXIX 2017AJ....154...32S, Cat. J/AJ/154/32
(End) Patricia Vannier [CDS] 25-Aug-2009
The document above follows the rules of the Standard Description for Astronomical Catalogues.From this documentation it is possible to generate f77 program to load files into arrays or line by line

catalogue service