Access to Astronomical Catalogues

← Click to display the menu
J/AJ/133/2464      Parameters and abundances of nearby giants    (Luck+, 2007)

Giants in the local region. Luck R.E., Heiter U. <Astron. J., 133, 2464-2486 (2007)> =2007AJ....133.2464L
ADC_Keywords: Abundances ; Spectroscopy ; Stars, giant ; Stars, nearby Keywords: solar neighborhood - stars: abundances - stars: late-type Abstract: We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R∼60000S/N>150, and spectral coverage from 475 to 685nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Description: High signal-to-noise ratio spectra were obtained during several observing runs between 1997 and 2005. For all observations we used the Sandiford Cassegrain Echelle Spectrograph (McCarthy et al. 1993PASP..105..881M) attached to the 2.1m telescope at McDonald Observatory. File Summary:
FileName Lrecl Records Explanations
ReadMe 80 . This file table1.dat 87 298 Program Stars table2.dat 96 298 Parameters and Iron Abundances table3.dat 93 298 Mass and Luminosity Estimates table4a.dat 114 298 *Average Abundances (Na, Mg, Al, Si, S, and Ca) table4b.dat 114 298 *Average Abundances (Sc, Ti, V, Cr, Mn, and Fe) table4c.dat 114 298 *Average Abundances (Co, Ni, Cu, Zn, Sr, and Y) table4d.dat 108 298 *Average Abundances (Ba, La, Ce, Pr, Nd, and Eu) table6.dat 67 298 Lithium Abundance Data table7.dat 110 894 CNO Data for the 3 types of analysis tables4.dat 152 872 *Average Abundances
Note on tables4.dat, table4a.dat, table4b.dat, table4c.dat, table4d.dat: the file "tables4.dat" was created from tables 4a-4d, with one line for each abundance method in a way similar to table7.dat All abundances are relative to H, i.e. abundances per element in the form [x/H] where x is a mean over all ionization stages of the element x. Results are expressed relative to Solar abundance, and use the MARCS stellar model atmosphere and flux libraries, Gustafsson et al. 2003, in ASP Conf. Ser. 288, "Stellar Atmosphere Modeling", see http://marcs.astro.uu.se/
See also: J/ApJ/657/241 : Spectroscopy of Leo I red giants (Koch+, 2007) J/MNRAS/382/553 : Abundances of nearby red clump giants (Liu+, 2007) J/PASJ/57/109 : Late-G giants abundances (Takeda+, 2005) J/A+A/430/165 : Radial velocities for 6691 K and M giants (Famaey+, 2005) J/A+A/409/251 : Li abundances and velocities in F and G stars (Mallik+, 2003) J/A+A/363/239 : Lithium abundances in single giant stars (de Medeiros+, 2000) J/A+AS/139/433 : RV and vsini of evolved stars (de Medeiros+ 1999) J/A+A/333/231 : O-M stars model atmospheres (Bessell+ 1998) Byte-by-byte Description of file: table1.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HIP The Hipparcos identification number 8- 13 I6 --- HD The HD identification number 15- 18 I4 -- HR ? The HR identification number 20- 25 F6.3 mag Vmag Apparent V band magnitude 27- 31 F5.2 mag VMAG Absolute V band magnitude (1) 33- 43 A11 --- SpType Spectral type (2) 45- 49 F5.2 mas plx Parallax 51- 55 F5.1 pc Dist Distance from parallax 57- 62 F6.2 deg GLON Galactic longitude 64- 69 F6.2 deg GLAT Galactic latitude 71- 76 F6.2 km/s RV Radial velocity 78- 81 F4.2 km/s e_RV Error in RV 83 A1 --- r_RV [LFM] Source for RV (3) 85- 87 A3 --- SB De Medeiros & Mayor (1999, cat. J/A+AS/139/433) spectroscopic binary classification
Note (1): From parallax derived distance. Note (2): Primary source Hipparcos (ESA 1997, Cat. I/239). Note (3): Note as follows: L = this work; F = Famaey et al. (2005, Cat. J/A+A/430/165); M = de Medeiros & Mayor (1999, Cat. J/A+AS/139/433).
Byte-by-byte Description of file: table2.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HIP The Hipparcos identification number 8- 13 I6 --- HD The HD identification number 15- 18 I4 -- HR ? The HR identification number 20- 23 I4 K STeff Spectroscopically determined effective temperature 25- 28 F4.2 [cm/s2] Slog(g) Spectroscopically determined logarithmic surface gravity 30- 33 F4.2 km/s SVt Spectroscopically determined microturbulent velocity 35- 39 F5.2 [Sun] S[Fe/H] Spectroscopically determined mean logarithmic iron abundance 41- 44 F4.2 [Sun] e_S[Fe/H] Standard deviation about Sp-[Fe/H] 46- 48 I3 --- o_S[Fe/H] Number of Fe I lines used to determine Sp-[Fe/H] 50- 53 I4 K MTeff ? MARCS75 derived effective temperature 55- 58 F4.2 [cm/s2] Mlog(g) ? MARCS75 derived logarithmic surface gravity 60- 63 F4.2 km/s MVt ? MARCS75 derived microturbulent velocity 65- 69 F5.2 [Sun] M[Fe/H] ? MARCS75 derived mean logarithmic iron abundance 71- 74 I4 K PTeff ? Physical approach effective temperature 76- 79 F4.2 [cm/s2] Plog(g) ? Physical approach logarithmic surface gravity 81- 84 F4.2 km/s PVt ? Physical approach microturbulent velocity 86- 90 F5.2 [Sun] P[FeI/H] ? Physical approach mean logarithmic FeI abundance 92- 96 F5.2 [Sun] P[FeII/H] ? Physical approach mean logarithmic FeII abundance
Byte-by-byte Description of file: table3.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HIP The Hipparcos identification number 8- 13 I6 --- HD The HD identification number 15- 18 I4 -- HR ? The HR identification number 20- 24 F5.2 mag VMAG Absolute V band magnitude (2)(1) 26- 29 F4.2 mag e_VMAG Error in VMAG 31- 34 F4.2 solMass PMass ? Physical approach mass estimate (3)(2) 36- 40 F5.2 mag PMbol ? Physical approach absolute bolometic magnitude estimate (2)(3) 42- 45 F4.2 solLum PLum ? Physical approach luminosity estimate (3)(2) 47- 50 F4.2 [cm/s2] Plog(g) ? Physical approach logarithmic surface gravity estimate (3)(2) 52- 56 F5.2 solMass SIMass Spectroscopic inversion mass estimate (4)(2) 58- 62 F5.2 mag SIMbol Spectroscopic inversion absolute bolometic magnitude estimate (2)(4) 64- 67 F4.2 solLum SILum Spectroscopic inversion luminosity estimate (4)(2) 69- 72 F4.2 [cm/s2] SIlog(g) Spectroscopic inversion logarithmic surface gravity estimate (4)(2) 74- 77 F4.2 solMass STMass ? Spectroscopic T_eff_ mass estimate (2)(3) 79- 83 F5.2 mag STMbol ? Spectroscopic T_eff_ absolute bolometic magnitude estimate (3)(2) 85- 88 F4.2 solLum STLum ? Spectroscopic T_eff_ luminosity estimate (3)(2) 90- 93 F4.2 [cm/s2] STlog(g) ? Spectroscopic T_eff_ logarithmic surface gravity estimate (3)(2)
Note (1): As computed from the Hipparcos parallax. Note (2): Sample statistics --------------------------------------------------------------------------- ⟵---- Physical---------> VMag e_Vmag Mass Mbol Lum log(g) --------------------------------------------------------------------------- Mean 0.95 0.14 1.56 0.55 1.69 2.60 Standard Error 0.04 0.00 0.02 0.04 0.02 0.02 Median 0.90 0.15 1.45 0.48 1.72 2.56 Mode 0.97 0.16 1.32 0.26 1.69 2.56 Standard Deviation 0.71 0.05 0.42 0.74 0.30 0.40 Sample Variance 0.50 0.00 0.17 0.55 0.09 0.16 Kurtosis 0.739 -0.195 2.496 1.665 1.702 8.360 Skewness 0.405 -0.060 1.540 0.423 -0.359 -0.066 Range 3.86 0.28 2.20 4.70 1.88 4.16 Minimum -0.87 0.02 0.93 -1.73 0.72 0.00 Maximum 2.99 0.30 3.13 2.97 2.60 4.16 Count 298 298 284 288 288 284 --------------------------------------------------------------------------- ←Spectroscopic Inversion-->⟵-Spectroscopic Teff---> Mass Mbol Lum log(g) Mass Mbol Lum log(g) --------------------------------------------------------------------------- Mean 2.72 0.63 1.66 2.89 1.64 0.62 1.66 2.70 Standard Error 0.08 0.04 0.02 0.03 0.02 0.04 0.02 0.02 Median 2.38 0.57 1.68 2.84 1.51 0.55 1.69 2.67 Mode 1.42 0.59 1.71 2.77 1.29 0.29 1.75 2.69 Standard Deviation 1.41 0.77 0.31 0.43 0.42 0.76 0.30 0.38 Sample Variance 1.98 0.59 0.09 0.19 0.18 0.58 0.09 0.15 Kurtosis 3.144 1.202 1.207 2.169 1.435 1.155 1.155 2.444 Skewness 1.424 0.403 -0.406 0.705 1.280 0.383 -0.383 0.963 Range 9.93 4.49 1.80 2.64 2.13 4.44 1.77 2.30 Minimum 0.48 -1.50 0.71 1.72 0.97 -1.46 0.72 1.73 Maximum 10.41 2.99 2.51 4.36 3.10 2.98 2.49 4.03 Count 298 298 298 298 295 295 295 295 --------------------------------------------------------------------------- Note (3): Mass and bolometric magnitude derived using the isochrones of Bertelli et al. (1994, Cat. J/A+AS/106/275) that are interpolated using the absolute V magnitude and photometric temperature. Lum and log(g) then derived using standard relations. Note (4): The spectroscopic temperature is used to determine the bolometric correction using Bessell, Castelli & Plez (1998, Cat. J/A+A/333/231). Mass is then determined using the spectroscopic value for the surface gravity (log(g)) and the luminosity using the standard relations.
Byte-by-byte Description of file: table4a.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HD The HD identification number 8- 12 F5.2 [Sun] SNa ? MARCS spectroscopic model average Na abundance 14- 18 F5.2 [Sun] MNa ? MARCS75 spectroscopic model average Na abundance 20- 24 F5.2 [Sun] PNa ? MARCS physical model average Na abundance 26- 30 F5.2 [Sun] SMg ? MARCS spectroscopic model average Mg abundance 32- 36 F5.2 [Sun] MMg ? MARCS75 spectroscopic model average Mg abundance 38- 42 F5.2 [Sun] PMg ? MARCS physical model average Mg abundance 44- 48 F5.2 [Sun] SAl ? MARCS spectroscopic model average Al abundance 50- 54 F5.2 [Sun] MAl ? MARCS75 spectroscopic model average Al abundance 56- 60 F5.2 [Sun] PAl ? MARCS physical model average Al abundance 62- 66 F5.2 [Sun] SSi ? MARCS spectroscopic model average Si abundance 68- 72 F5.2 [Sun] MSi ? MARCS75 spectroscopic model average Si abundance 74- 78 F5.2 [Sun] PSi ? MARCS physical model average Si abundance 80- 84 F5.2 [Sun] SS ? MARCS spectroscopic model average S abundance 86- 90 F5.2 [Sun] MS ? MARCS75 spectroscopic model average S abundance 92- 96 F5.2 [Sun] PS ? MARCS physical model average S abundance 98-102 F5.2 [Sun] SCa ? MARCS spectroscopic model average Ca abundance 104-108 F5.2 [Sun] MCa ? MARCS75 spectroscopic model average Ca abundance 110-114 F5.2 [Sun] PCa ? MARCS physical model average Ca abundance
Byte-by-byte Description of file: table4b.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HD The HD identification number 8- 12 F5.2 [Sun] SSc ? MARCS spectroscopic model average Sc abundance 14- 18 F5.2 [Sun] MSc ? MARCS75 spectroscopic model average Sc abundance 20- 24 F5.2 [Sun] PSc ? MARCS physical model average Sc abundance 26- 30 F5.2 [Sun] STi ? MARCS spectroscopic model average Ti abundance 32- 36 F5.2 [Sun] MTi ? MARCS75 spectroscopic model average Ti abundance 38- 42 F5.2 [Sun] PTi ? MARCS physical model average Ti abundance 44- 48 F5.2 [Sun] SV ? MARCS spectroscopic model average V abundance 50- 54 F5.2 [Sun] MV ? MARCS75 spectroscopic model average V abundance 56- 60 F5.2 [Sun] PV ? MARCS physical model average V abundance 62- 66 F5.2 [Sun] SCr ? MARCS spectroscopic model average Cr abundance 68- 72 F5.2 [Sun] MCr ? MARCS75 spectroscopic model average Cr abundance 74- 78 F5.2 [Sun] PCr ? MARCS physical model average Cr abundance 80- 84 F5.2 [Sun] SMn ? MARCS spectroscopic model average Mn abundance 86- 90 F5.2 [Sun] MMn ? MARCS75 spectroscopic model average Mn abundance 92- 96 F5.2 [Sun] PMn ? MARCS physical model average Mn abundance 98-102 F5.2 [Sun] SFe MARCS spectroscopic model average Fe abundance 104-108 F5.2 [Sun] MFe ? MARCS75 spectroscopic model average Fe abundance 110-114 F5.2 [Sun] PFe ? MARCS physical model average Fe abundance
Byte-by-byte Description of file: table4c.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HD The HD identification number 8- 12 F5.2 [Sun] SCo ? MARCS spectroscopic model average Co abundance 14- 18 F5.2 [Sun] MCo ? MARCS75 spectroscopic model average Co abundance 20- 24 F5.2 [Sun] PCo ? MARCS physical model average Co abundance 26- 30 F5.2 [Sun] SNi ? MARCS spectroscopic model average Ni abundance 32- 36 F5.2 [Sun] MNi ? MARCS75 spectroscopic model average Ni abundance 38- 42 F5.2 [Sun] PNi ? MARCS physical model average Ni abundance 44- 48 F5.2 [Sun] SCu ? MARCS spectroscopic model average Cu abundance 50- 54 F5.2 [Sun] MCu ? MARCS75 spectroscopic model average Cu abundance 56- 60 F5.2 [Sun] PCu ? MARCS physical model average Cu abundance 62- 66 F5.2 [Sun] SZn ? MARCS spectroscopic model average Zn abundance 68- 72 F5.2 [Sun] MZn ? MARCS75 spectroscopic model average Zn abundance 74- 78 F5.2 [Sun] PZn ? MARCS physical model average Zn abundance 80- 84 F5.2 [Sun] SSr ? MARCS spectroscopic model average Sr abundance 86- 90 F5.2 [Sun] MSr ? MARCS75 spectroscopic model average Sr abundance 92- 96 F5.2 [Sun] PSr ? MARCS physical model average Sr abundance 98-102 F5.2 [Sun] SY ? MARCS spectroscopic model average Y abundance 104-108 F5.2 [Sun] MY ? MARCS75 spectroscopic model average Y abundance 110-114 F5.2 [Sun] PY ? MARCS physical model average Y abundance
Byte-by-byte Description of file: table4d.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HD The HD identification number 8- 12 F5.2 [Sun] SBa ? MARCS spectroscopic model average Ba abundance 14- 18 F5.2 [Sun] MBa ? MARCS75 spectroscopic model average Ba abundance 20- 24 F5.2 [Sun] PBa ? MARCS physical model average Ba abundance 26- 30 F5.2 [Sun] SLa ? MARCS spectroscopic model average La abundance 32- 36 F5.2 [Sun] MLa ? MARCS75 spectroscopic model average La abundance 38- 42 F5.2 [Sun] SCe ? MARCS spectroscopic model average Ce abundance 44- 48 F5.2 [Sun] MCe ? MARCS75 spectroscopic model average Ce abundance 50- 54 F5.2 [Sun] PCe ? MARCS physical model average Ce abundance 56- 60 F5.2 [Sun] SPr ? MARCS spectroscopic model average Pr abundance 62- 66 F5.2 [Sun] MPr ? MARCS75 spectroscopic model average Pr abundance 68- 72 F5.2 [Sun] PPr ? MARCS physical model average Pr abundance 74- 78 F5.2 [Sun] SNd ? MARCS spectroscopic model average Nd abundance 80- 84 F5.2 [Sun] MNd ? MARCS75 spectroscopic model average Nd abundance 86- 90 F5.2 [Sun] PNd ? MARCS physical model average Nd abundance 92- 96 F5.2 [Sun] SEu ? MARCS spectroscopic model average Eu abundance 98-102 F5.2 [Sun] MEu ? MARCS75 spectroscopic model average Eu abundance 104-108 F5.2 [Sun] PEu ? MARCS physical model average Eu abundance
Byte-by-byte Description of file: table6.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HIP The Hipparcos identification number 8- 13 I6 --- HD The HD identification number 15- 18 I4 -- HR ? The HR identification number 20- 23 I4 K STeff Spectrosopic analysis effective temperature 25- 28 I4 K MTeff ? MARCS75 analysis effective temperature 30- 33 I4 K PTeff ? Physical analysis effective temperature 35- 39 F5.2 km/s Vel Macroturbulent or rotational velocity 41 A1 --- n_Vel [GR] Gaussian macroturbulence or Rotation Vel 43- 47 F5.1 10-13m EWLi Li Equivalent width in milliAngstroms (2) 49- 53 F5.2 [-] S-Li Spectrosopic analysis Li abundance (3) 55- 59 F5.2 [-] M-Li ? MARCS75 analysis Li abundance (3) 61- 65 F5.2 [-] P-Li ? Physical analysis Li abundance (3) 67 A1 --- Q Fit quality (4)
Note (2): Lithium EW is for the synthesized combined components. Note (3): Abundances are logε where log ε(H)=12. Note (4): Where A through D are quality of fit with A the best fit. L denotes an abundance limit.
Byte-by-byte Description of file: table7.dat
Bytes Format Units Label Explanations
1 A1 --- A [SMP] Type of analysis (G1) 3- 8 I6 --- HIP The Hipparcos identification number 10- 15 I6 --- HD The HD identification number 17- 20 I4 --- HR ? The HR identification number 22- 25 F4.2 [-] C ? The C number abundance (2) 27- 30 F4.2 [-] N ? The N number abundance (2) 32- 35 F4.2 [-] O ? The O number abundance (2) 37- 41 F5.2 [Sun] [C/H] ? Log of C/H number abundance (3) 43- 47 F5.2 [Sun] [N/H] ? Log of N/H number abundance (3) 49- 53 F5.2 [Sun] [O/H] ? Log of O/H number abundance (3) 55- 59 F5.2 [Sun] [C/Fe] ? Log of C/Fe number abundance (3) 61- 65 F5.2 [Sun] [N/Fe] ? Log of C/Fe number abundance (3) 67- 71 F5.2 [Sun] [O/Fe] ? Log of C/Fe number abundance (3) 73- 76 F4.2 [-] CNO ? The C+N+O number abundance (2) 78- 82 F5.2 [Sun] [CNO/H] ? Log of (C+N+O)/H number abundance (3) 84- 88 F5.2 [Sun] [CNO/Fe] ? Log of (C+N+O)/Fe number abundance (3) 90- 93 F4.2 [-] CN ? The C+N number abundance (2) 95- 99 F5.2 [Sun] [CN/H] ? Log of (C+N)/H number abundance (3) 101-105 F5.2 [Sun] [CN/Fe] ? Log of (C+N)/Fe number abundance (3) 107-110 F4.2 [-] C/O ? Ratio of C to O abundance [10^(C minus O)] (2)
Note (2): Abundances are logε where logε(H)=12. Note (3): CNO abundances relative to the Sun using solar CNO determined using a solar reflection spectrum and MARCS and MARCS75 models. For MARCS models solar C, N, O=8.50, 8.18, 8.81 and for MARCS75 solar C, N, O=8.42, 8.16, and 8.75 except for Teff>6200 where C=8.38 and 8.52 respectively. [C/Fe], [N/Fe], [O/Fe]: CNO abundances normalized to the Fe content. [C/Fe]=[C/H] minus [Fe/H] where [Fe/H] is the iron content of the star relative to the solar value.
Byte-by-byte Description of file: tables4.dat
Bytes Format Units Label Explanations
1- 6 I6 --- HD The HD identification number 8 A1 --- A [SMP] Type of analysis (G1) 10- 14 F5.2 [Sun] Na ? Average Na abundance 16- 20 F5.2 [Sun] Mg ? Average Mg abundance 22- 26 F5.2 [Sun] Al ? Average Al abundance 28- 32 F5.2 [Sun] Si ? Average Si abundance 34- 38 F5.2 [Sun] S ? Average S abundance 40- 44 F5.2 [Sun] Ca ? Average Ca abundance 46- 50 F5.2 [Sun] Sc ? Average Sc abundance 52- 56 F5.2 [Sun] Ti ? Average Ti abundance 58- 62 F5.2 [Sun] V ? Average V abundance 64- 68 F5.2 [Sun] Cr ? Average Cr abundance 70- 74 F5.2 [Sun] Mn ? Average Mn abundance 76- 80 F5.2 [Sun] Fe ? Average Fe abundance 82- 86 F5.2 [Sun] Co ? Average Co abundance 88- 92 F5.2 [Sun] Ni ? Average Ni abundance 94- 98 F5.2 [Sun] Cu ? Average Cu abundance 100-104 F5.2 [Sun] Zn ? Average Zn abundance 106-110 F5.2 [Sun] Sr ? Average Sr abundance 112-116 F5.2 [Sun] Y ? Average Y abundance 118-122 F5.2 [Sun] Ba ? Average Ba abundance 124-128 F5.2 [Sun] La ? Average La abundance 130-134 F5.2 [Sun] Ce ? Average Ce abundance 136-140 F5.2 [Sun] Pr ? Average Pr abundance 142-146 F5.2 [Sun] Nd ? Average Nd abundance 148-152 F5.2 [Sun] Eu ? Average Eu abundance
Global Notes: Note (G1): Type of analysis as follows: S = Spectroscopic analysis; M = MARCS75 analysis; P = Physical analysis.
History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 06-May-2009
The document above follows the rules of the Standard Description for Astronomical Catalogues.From this documentation it is possible to generate f77 program to load files into arrays or line by line

catalogue service

© UDS/CNRS

Contact