Access to Astronomical Catalogues

← Click to display the menu
J/A+A/504/359 Mock spectro-photometric catalog of galaxies (Jouvel+, 2009)

Designing future dark energy space mission. I. Building realistic galaxy spectro-photometric catalogs and their first applications. Jouvel S., Kneib J-P, Ilbert O., Bernstein G., Arnouts S., Dahlen T., Ealet A., Milliard B., Aussel H., Capak P., Le Brun V., McCracken H., Capak P., Salvato M., Scoville N. <Astron. Astrophys. 504, 359 (2009)> =2009A&A...504..359J
ADC_Keywords: Models ; Photometry ; Spectroscopy Keywords: cosmology: observations - surveys - catalogs - techniques: miscellaneous Abstract: Future dark energy space missions such as JDEM and EUCLID are being designed to survey the galaxy population to trace the geometry of the universe and the growth of structure, which both depend on the cosmological model. To reach the goal of high precision cosmology they need to evaluate the capabilities of different instrument designs based on realistic mock catalog. The aim of this paper is to construct realistic and flexible mock catalogs based on our knowledge of galaxy population from current deep surveys. We explore two categories of mock catalog : (i) based on luminosity functions fit of observations (GOODS, UDF, COSMOS, VVDS) using the Le Phare software (ii) based on the observed COSMOS galaxy distribution which benefits from all the properties of the data-rich COSMOS survey. For these two catalogs, we have produced simulated number counts in several bands, color diagrams and redshift distribution for validation against real observational data. We also derive some basic requirements to help designing future Dark Energy mission in terms of number of galaxies available for the weak-lensing analysis as a function of the PSF size and depth of the survey. We also compute the spectroscopic success rate for future spectroscopic redshift surveys (i) aiming at measuring BAO in the case of the wide field spectroscopic redshift survey, and (ii) for the photometric redshift calibration survey which is required to achieve weak lensing tomography with great accuracy. They will be publicly accessible at http://lamwws.oamp.fr/cosmowiki/RealisticSpectroPhotCat, or by request to the first author of this paper. Description: 2 Mock catalogs : CMC -> COSMOS Mock Catalog from the COSMOS survey GLFC -> GOODS Luminosity Function Catalog For both catalogs : Id, redshift, model, E(B-V), half-light radius, photometric bands HST : F435W, F606W, F775W, F850lp, F110W, F160W photometric bands VVDS : B, V, R, I, Ks. For the CMC catalog only : emission line : Ly, OII, Hb, OIIIa, OIIIb, Ha File Summary:
FileName Lrecl Records Explanations
ReadMe 80 . This file glfc.dat 279 641785 GOODS Luminosity Function based catalog of mock galaxies (magnitudes in AB system) cmc.dat 751 537989 COSMOS Mock catalog (magnitudes in AB system)
See also: II/258 : Hubble Ultra Deep Field Catalog (UDF) (STScI, 2004) II/261 : GOODS initial results (Giavalisco+, 2004) II/286 : VIRMOS deep imaging survey. VVDS-F02 catalog (VIRMOSteam, 2008) J/A+A/449/951 : GOODS-MUSIC sample: multicolour catalog (Grazian+, 2006) Byte-by-byte Description of file: cmc.dat
Bytes Format Units Label Explanations
1- 6 I6 --- Seq [1,537990] Sequential number 8- 11 F4.2 --- z [0,6] Redshift bin 12- 13 A2 --- --- [00] 15- 16 I2 --- Mod [1,47] Model of galaxy (G1) 18- 21 F4.2 --- E(B-V) [0,0.5] Extinction 22- 23 A2 --- --- [00] 25- 35 F11.4 pix hlr [-24642.21,3721.84] Half-light radius (2) 37- 48 E12.7 mag F435W [-99.9,53] Theoretical magnitude in F435W band 50- 61 E12.7 mag F435Wr [-99.91,38] Randomized magnitude in F435W band 63- 74 E12.7 mag e_F435W [-99,4.04e+12] Errors on magnitude in F435W 76- 87 E12.7 mag F606W [-16,31] Theoretical magnitude in F606W band 89-100 E12.7 mag F606Wr [-16,32] Randomized magnitude in F606W band 102-113 E12.7 mag e_F606W [0.0001,0.8] Errors on magnitude in F606W 115-126 E12.7 mag F775W [-17,30] Theoretical magnitude in F775W band 128-139 E12.7 mag F775Wr [-17,30] Randomized magnitude in F775W band 141-152 E12.7 mag e_F775W [0.0001] Errors on magnitude in F775W 154-165 E12.7 mag F850lp [-17,30] Theoretical magnitude in F850lp band 167-178 E12.7 mag F850lpr [-17,30] Randomized magnitude in F850lp band 180-191 E12.7 mag e_F850lp [0.0001] Errors on magnitude in F850lp 193-204 E12.7 mag F110W [-17,30] Theoretical magnitude in F110W band 206-217 E12.7 mag F110Wr [-17,30] Randomized magnitude in F110W band 219-230 E12.7 mag e_F110W [0.0001] Errors on magnitude in F110W 232-243 E12.7 mag F160W [-18,30] Theoretical magnitude in F160W band 245-256 E12.7 mag F160Wr [-18,30] Randomized magnitude in F160W band 258-269 E12.7 mag e_F160W [0.0001] Errors on magnitude in F160W 273-284 E12.7 mag Bmag [-99.9,53] Theoretical magnitude in Bmag band 286-297 E12.7 mag Bmagr [-99.9004,39] Randomized magnitude in B band 299-310 E12.7 mag e_Bmag [-99,6.4e+12] Errors on magnitude in Bmag 312-323 E12.7 mag Vmag [-99.9,47] Theoretical magnitude in V band 325-336 E12.7 mag Vmagr [-99.9004,37] Randomized magnitude in V band 338-349 E12.7 mag e_Vmag [-99,6.02e+11] Errors on magnitude in Vmag 351-362 E12.7 mag Rmag [-17,31] Theoretical magnitude in R band 364-375 E12.7 mag Rmagr [-17,30] Randomized magnitude in R band 377-388 E12.7 mag e_Rmag [0.0001,0.7] Errors on magnitude in Rmag 390-401 E12.7 mag Imag [-17,30] Theoretical magnitude in I band 403-414 E12.7 mag Imagr [-17,31] Randomized magnitude in I band 416-427 E12.7 mag e_Imag [0.0001,0.4] Errors on magnitude in Imag 429-440 E12.7 mag Ksmag [-17,30] Theoretical magnitude in Ksmag band 442-453 E12.7 mag Ksmagr [-16.7824,29] Randomized magnitude in Ks band 455-466 E12.7 mag e_Ksmag [0.0001,0.3] Errors on magnitude in Ksmag 468-479 E12.7 0.1nm lLy [-99.9,8512] Wavelength in Ly 481-492 E12.7 mW/m2 FLy [-99.9,0.05] Theoretical flux in Ly 494-505 E12.7 mW/m2/Hz FcLy [-99.9,2.2e-15] Continuum flux in Ly 507-518 E12.7 0.1nm lOII [-99.9,26089] Wavelength in OII 520-531 E12.7 mW/m2 FOII [-99.9,0.05] Theoretical flux in OII 533-544 E12.7 mW/m2/Hz FcOII [-99.9,9.3e-15] Continuum flux in OII 546-557 E12.7 0.1nm lHb [-99.9,34027] Wavelength in Hbeta 559-570 E12.7 mW/m2 FHb [-99.9,0.04] Theoretical flux in Hb 572-583 E12.7 mW/m2/Hz FcHb [-99.9,4.03e-14] Continuum flux in Hb 585-596 E12.7 0.1nm lOIIIa [-99.9,34713] Wavelength in OIII(4959) 598-609 E12.7 mW/m2 FOIIIa [-99.9,0.008] Theoretical flux in OIII(4959) 611-622 E12.7 mW/m2/Hz FcOIIIa [-99.9,4.2e-14] Continuum flux in OIII(4959) 624-635 E12.7 0.1nm lOIIIb [-99.9,35049] Wavelength in OIII(5007) 637-648 E12.7 mW/m2 FOIIIb [-99.9,0.03] Theoretical flux in OIII(5007) 650-661 E12.7 mW/m2/Hz FcOIIIb [-99.9,4.2e-14] Continuum flux in OIII(5007) 663-674 E12.7 0.1nm lHa [-99.9,45941] Wavelength in Hα 676-687 E12.7 mW/m2 FHa [-99.9,0.13] Theoretical flux in Ha 689-700 E12.7 mW/m2/Hz FcHa [-99.9,0.8e-13] Continuum flux in Ha 705-715 E11.9 mW/m2 FHbr [-106,0.03] Randomized flux in Ly 717-727 E11.9 mW/m2 FOIIIar [-431.06,0.02] Randomized flux in OIII(4959) 729-739 E11.9 mW/m2 FOIIIbr [-332.855,0.04] Randomized flux in OIII(5007) 741-751 E11.9 mW/m2 FHar [-114.779,0.10] Randomized flux in Ha
Note (2): 1/2-light radius in pixel, in scale 0.03arcsec/pix
Byte-by-byte Description of file: glfc.dat
Bytes Format Units Label Explanations
1- 6 I6 --- Seq [1,641785] Sequential number 8- 11 F4.2 --- z [0.02,6] Redshift bin 12 A1 --- --- [0] 14- 15 I2 --- Mod [1,66] Model of galaxy (G1) 17 I1 --- LF [1,3] Luminosity Function (2) 19- 25 F7.3 mag M* M* Luminosity Function parameter (3) 27- 38 E12.7 --- phi* phi* Luminosity Function parameter (3) 40- 45 F6.3 --- alpha alpha Luminosity Function parameter (3) 47- 53 F7.3 mag F435W [16,105] Theoretical magnitude in F435W band 55- 60 F6.3 mag F606W [15,33] Theoretical magnitude in F606W band 62- 67 F6.3 mag F775W [14,31] Theoretical magnitude in F775W band 69- 74 F6.3 mag F850lp [14,31] Theoretical magnitude in F850lp band 76- 81 F6.3 mag F110W [14,31] Theoretical magnitude in F110W band 83- 88 F6.3 mag F160W [14,31] Theoretical magnitude in F160W band 90- 96 F7.3 mag Bmag [16,105] Theoretical magnitude in Bmag band 98-104 F7.3 mag Vmag [15,103] Theoretical magnitude in Vmag band 106-111 F6.3 mag Rmag [15,32] Theoretical magnitude in Rmag band 113-118 F6.3 mag Imag [14,31] Theoretical magnitude in Imag band 120-125 F6.3 mag Ksmag [14,31] Theoretical magnitude in Ksmag band 127-132 F6.3 mag F435Wr [16,32] Randomized magnitude in F435W band 134-139 F6.3 mag F6060Wr [15,32] Randomized magnitude in F606W band 141-146 F6.3 mag F775Wr [14,32] Randomized magnitude in F775W band 148-153 F6.3 mag F850lpr [14,31] Randomized magnitude in F850lp band 155-160 F6.3 mag F110Wr [14,31] Randomized magnitude in F110W band 162-167 F6.3 mag F160Wr [14,31] Randomized magnitude in F160W band 169-174 F6.3 mag Bmagr [16,32] Randomized magnitude in B band 176-181 F6.3 mag Vmagr [15,32] Randomized magnitude in V band 183-188 F6.3 mag Rmagr [15,32] Randomized magnitude in R band 190-195 F6.3 mag Imagr [14,32] Randomized magnitude in I band 197-202 F6.3 mag Ksmagr [14,32] Randomized magnitude in Ks band 204-209 F6.3 mag e_F435W ?=-1 Errors on magnitude in F435W band 211-216 F6.3 mag e_F606W ?=-1 Errors on magnitude in F606W band 218-223 F6.3 mag e_F775W ?=-1 Errors on magnitude in F775W band 225-230 F6.3 mag e_F850lp ?=-1 Errors on magnitude in F850lp band 232-237 F6.3 mag e_F110W ?=-1 Errors on magnitude in F110W band 239-244 F6.3 mag e_F160W ?=-1 Errors on magnitude in F160W band 246-251 F6.3 mag e_Bmag ?=-1 Errors on magnitude in B band 253-258 F6.3 mag e_Vmag ?=-1 Errors on magnitude in V band 260-265 F6.3 mag e_Rmag ?=-1 Errors on magnitude in R band 267-272 F6.3 mag e_Imag ?=-1 Errors on magnitude in I band 274-279 F6.3 mag e_Ksmag ?=-1 Errors on magnitude in Ks band
Note (2): Luminosity Function code as follows: 1 = E(B-V)=0, type 1->17, B-V(rest frame): 1.069 --> 0.701 2 = E(B-V)=0, type 17->55, B-V(rest frame): 0.701 --> 0.2167 type 55->66, B-V(rest frame): 0.2167 --> -0.0301 3 = E(B-V)=0.1, type 56->66, B-V(rest frame): 0.3252 --> 0.1016 E(B-V)=0.2, type 56->66, B-V(rest frame): 0.4592 --> 0.2345 E(B-V)=0.3, type 56->66, B-V(rest frame): 0.5945 --> 0.3686 Note (3): To produce the mock catalog, knowing the luminosity function, Le Phare derives a number of objects by magnitude and redshift bins (z,m) using a Schechter function (Schechter, 1976ApJ...203..297): n(M(z,m))dM = φ*[M(z,m)/M*]αexp[-M(z,m)/M*]dM/M* where M is the absolute magnitude which is a function of redshift and apparent magnitude (z,m), M*, phi* and α are the parameters of the Schechter function.
Global notes: Note (G1): Model types: 1- 8 = Ell-S0 9- 15 = Sa-Sc 16- 19 = Sd-Sdm ≥20 = SB
Acknowledgements: Stephanie Jouvel, stephanie.jouvel(at)oamp.fr
(End) Stephanie Jouvel [LAM, France], Patricia Vannier [CDS] 17-Aug-2009
The document above follows the rules of the Standard Description for Astronomical Catalogues.From this documentation it is possible to generate f77 program to load files into arrays or line by line

catalogue service

© UDS/CNRS

Contact