Access to Astronomical Catalogues

← Click to display the menu
J/A+A/408/387       Transformation between ICRS and ITRS      (Bretagnon+, 2003)

On transformation between International Celestial and Terrestrial Reference systems. Bretagnon P., Brumberg V.A. <Astron. Astrophys. 408, 387 (2003)> =2003A&A...408..387B
ADC_Keywords: Earth Keywords: relativity - reference systems - time Abstract: Based on the current IAU hierarchy of the relativistic reference systems, practical formulae for the transformation between barycentric (BCRS) and geocentric (GCRS) celestial reference systems are derived. BCRS is used to refer to ICRS, International Celestial Reference System. This transformation is given in four versions, dependent on the time arguments used for BCRS (TCB or TDB) and for GCRS (TCG or TT). All quantities involved in these formulae have been tabulated with the use of the VSOP theories (IMCCE theories of motion of the major planets). In particular, these formulae may be applied to account for the indirect relativistic third-body perturbations in motion of Earth's satellites and Earth's rotation problem. We propose to use the SMART theory (IMCCE theory of Earth's rotation) in constructing the Newtonian three-dimensional spatial rotation transformation between GCRS and ITRS, the International Terrestrial Reference System. This transformation is compared with two other versions involving extra angular variables currently used by IERS, the International Earth Rotation Service. It is shown that the comparison of these three forms of the same transformation may be greatly simplified by using the proposed composite rotation formula. File Summary:
FileName Lrecl Records Explanations
ReadMe 80 . This file tables.dat 88 230 *Parameters tables.tex 121 427 LaTeX version of the tables
Note on tables.dat: xEi, vEi, c-2aE1, c-2UE(t,xE), c-2Ap, c-2ApvEi, c-2Fi, and c-2{dot}(F)i (i=1,2,3) in function of t=TDB (Barycentric Dynamical Time) as computed with VSOP (Variations Seculaires des Orbites Planetaires) theories. All values are given using the astronomical unit as the unit of length and 1000 Julian years (365250 Julian days) as the unit of time. All series are presented in form of (31), i.e. xE1(t)= {Sum on alpha}talpha * [{Sum on k}(Xik)alpha * cos((psik)alpha + (nuk)alpha*t]
See also: VI/79 : Lunar Solution ELP 2000-82B (Chapront-Touze+, 1998) J/A+A/400/1145 : Celestial Intermediate Pole + Ephemeris Origin (Capitaine+, 2003) Byte-by-byte Description of file: tables.dat
Bytes Format Units Label Explanations
1- 2 I2 --- Tab Table number (1) 4- 5 I2 --- Term Ordinal number of the term 7 I1 rad l1 Mean longitude of Mercury 9 I1 rad l2 Mean longitude of Venus 11- 13 I3 rad l3 Mean longitude of Earth 15- 16 I2 rad l4 Mean longitude of Mars 18- 19 I2 rad l5 Mean longitude of Jupiter 21- 22 I2 rad l6 Mean longitude of Saturne 24 I1 rad l7 Mean longitude of Uranus 26 I1 rad l8 Mean longitude of Neptune 28- 29 I2 rad D Delaunay D argument of lunar theory (2) 31- 32 I2 rad F Delaunay F argument of lunar theory (2) 34- 35 I2 rad l Delaunay l argument of lunar theory (2) 38- 51 E14.9 --- X X coefficient 55- 68 E14.9 rad psi Phase angle of the argument 72- 85 E14.9 10-3rad/yr nu Frequency of the argument, expressed in rad/(1000 Julian year) 88 I1 --- alpha Exposant alpha of power of t
Note (1): Parameters associated to the tables: 01: xE1, 02: xE2, 03: xE3 04: vE1, 05: vE2, 06: vE3 07: c-2aE1, 08: c-2aE2, 09: c-2aE3 10: c-2UE(t,xE) 11: c-2Ap 12: c-2ApvE1, 13: c-2ApvE2, 14: c-2ApvE3 15: c-2F1, 16: c-2F2, 17: c-2F3 18: c-2{dot}(F)1, 19: c-2{dot}(F)2, 20: c-2{dot}(F)3 The truncation level is as follows: 0.5E-03 au over 1000 yrs for xEi (Tables 1-3), 0.5AU/1000 yrs over 1000 yrs for vEi (Tables 4-6), 0.4E-12 over 1000 yrs for c-2aEi (Tables 7-9), 0.15E-12 over 1000 yrs for c-2UE(t,xE) (Table 10) 0.5E-16 over 1000 yrs for c-2Ap (Table 11), 0.8E-12 over 1000 yrs for c-2ApvEi (Tables 12-14) 0.1E-12 over 1000 yrs for c-2Fi (Tables 15-17) 0.1E-8 over 1000 yrs for c-2{dot}(F)i (Tables 18-20) Note (2): Delaunay's arguments: D = w1 - l3 + 180°, F = w1 - w3 ; l = w1 - w2 where w1, w2, and w3 are respectively the secular mean lunar longitude, the mean longitude of the perigee and the mean longitude of the node. l3 is the mean longitude of the Earth
Acknowledgements: Victor Brumberg References: Arais et al., IRCS Servive 1995A&A...303..604A Seidelmann & Kovalesky, Definitions (ICRS, CIP and CEO) 2002A&A...392..341S
(End) Patricia Bauer [CDS] 19-Jun-2003
The document above follows the rules of the Standard Description for Astronomical Catalogues.From this documentation it is possible to generate f77 program to load files into arrays or line by line

catalogue service